WIRELESS COMMUNICATIONS

RANGE	ACTIVE	PASSIVE
Arm's Length	Pills, hearing aids, computer peripherals	Faucets, CD's, thermometers,
<100 m	Wireless phones, remote controllers, computer links	Cameras, doors
<100 km	Radio, television, cell phones, UWB, 802.11	Multispectral remote sensing
Global	Ham radio, communications satellites, radar, lidar	Weather satellites
Cosmic	Radio & optical interplanetary communications, radar, lidar	Radio & optical astronomy

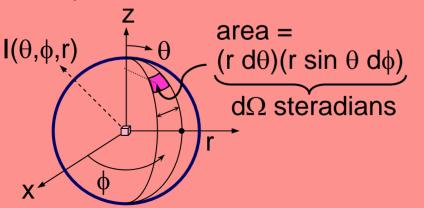
COMMUNICATION REQUIRES ENERGY AND POWER

Typical receivers need:

Received power required:

 $E_b > \sim 10^{-20}$ Joules/bit

 $P_{rec} = M_{bps}E_{b}$ [Watts] (M_{bps} is data rate, bits/sec)


RADIATED POWER

Transmitted Intensity: $I(\theta,\phi,r)$ [W/m²] For isotropic radiation: $I(\theta,\phi,r) = \frac{P_R}{4\pi r^2}$ [Wm⁻²] Total power radiated [W]

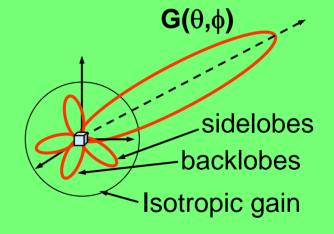
$$P_{R} = \int_{0}^{2\pi} \int_{0}^{\pi} I(\theta, \phi, r) r^{2} \underline{\sin\theta} \, d\theta \, d\phi}_{d\Omega}$$
d\Omega (steradians)

Steradian: unit of solid angle $d\theta$, $d\phi$:units of radians.Spheres:span 4π steradians

Isotropic:

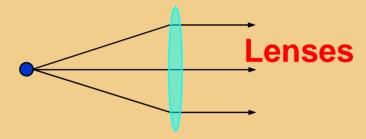
main beam $I(\theta,\phi,r)$ sidelobes backlobes

Antenna pattern:

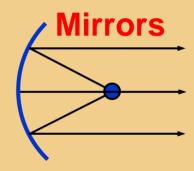

ΑΝΤΕΝΝΑ GAIN G(θ,φ)

Gain over Isotropic, **G**(θ , ϕ):

 $G(\theta,\phi) = \underbrace{I(\theta,\phi,r)}_{(P_R/4\pi r^2)} \xleftarrow{} \text{Intensity actually radiated [Wm^{-2}]}_{(P_R/4\pi r^2)} \xleftarrow{} \text{Intensity if } P_R \text{ were radiated isotropically}$


Intensity at receiver:

 $I(\theta,\phi,r) = G(\theta,\phi) (P_R/4\pi r^2) [Wm^{-2}]$



HOW TO INCREASE ANTENNA GAIN $G(\theta,\phi)$?

Focus the energy

Photographs illustrating lenses, mirrors, and phasing removed due to copyright restrictions.

ANTENNA EFFECTIVE AREA $A_e(\theta,\phi)[m^2]$

Intensity radiated in a particular direction

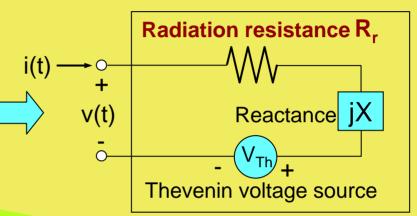
 $I(\theta,\phi,r) = G_t(\theta,\phi) (P_R/4\pi r^2) [W/m^2]$

Power Received from a particular direction

 $\mathsf{P}_{\mathsf{rec}} = \mathsf{I}(\theta, \phi) \; \mathsf{A}(\theta, \phi) \quad [\mathsf{W}]$

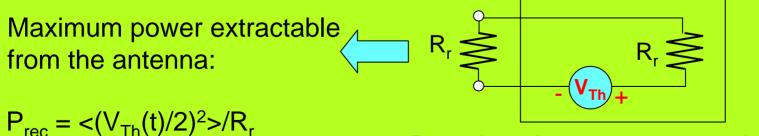
Antenna Effective Area and Gain

 $A(\theta,\phi) = G(\theta,\phi) (\lambda^2/4\pi)$ [m²]


Power Received from a particular direction $P_{rec} = P_t G_t G_r (\lambda/4\pi r)^2 [W] \implies$ "reciprocity"

CIRCUIT PROPERTIES OF ANTENNAS

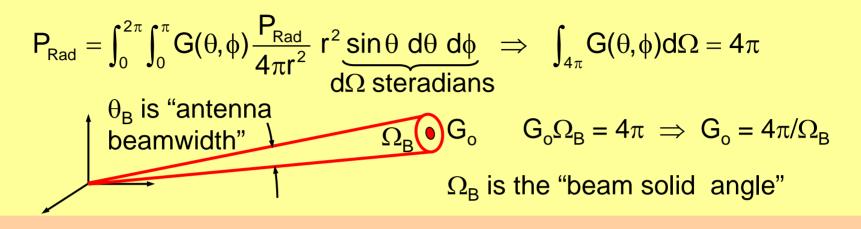
When transmitting:


Power radiated = P_R $P_R = \langle i^2(t) \rangle R_r$ [W]

Equivalent circuit of antenna

When receiving:

The venin voltage V_{Th} is induced by incoming waves


Reactive elements are tuned out

SUMMARY

Wireless communications are ubiquitous

$$\begin{split} G(\theta, \phi) &= I(\theta, \phi, r) / (P_t/4\pi r^2) = \text{Antenna gain over isotropic} \\ \text{Boost antenna gain using lenses, mirrors, or phasing} \\ A_r &= G_r (\lambda^2/4\pi) = \text{Antenna effective area } [m^2] \\ M [bps] &= P_{rec}/E_b = IA_e/E_b = P_tG_tG_r(\lambda/4\pi r)^2/E_b = \text{data rate} \\ E_b &> \sim 10^{-20} \text{ [J] at the receiver } (\text{see footnote 39 on p360}) \\ \text{Antennas have Thevenin equivalent circuits, radiation resistance} \end{split}$$

EXAMPLE – INTERSTELLAR COMM.

Best microwave antennas: $\theta_B \cong 1$ arc min = (1/60)°(1/57) radians $\cong 2^{-12}$ rad $G_o = 4\pi/\Omega_B \cong 2^3/2^{-24} \cong 2^{27} \cong 10^8$ (or 80 dB)

Strongest transmitters ~ 10⁶ Watts

Nearest stars ~1 light year = 3×10^7 sec $\times 3 \times 10^8$ m/s $\approx 10^{16}$ m

$$P_{rec} = \frac{P_{rad}}{4\pi r^2} G_t G_r \frac{\lambda^2}{4\pi} \cong \frac{10^6 \ 10^8 \ 10^8 \ 0.03^2}{10 \ 10^{32} \ 10} \cong 10^{-15} \text{ [W] [J/s]}$$

Data rate R \cong P_{rec}[J/s] / 10⁻²⁰[J/bit] = 10⁻¹⁵/10⁻²⁰ = 10⁵ bits/sec

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.