RLC RESONATORS

Resonators trap energy:

Also:
terminated TEM lines, waveguides

Series RLC resonator
 Parallel RLC resonator

Circuit equations, series resonator:

$$
\begin{aligned}
& L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t=0 \Rightarrow j \omega L I+R I+\frac{I}{j \omega C}=0 \\
& {\left[(j \omega)^{2}+(j \omega) \frac{R}{L}+\frac{1}{L C}\right] \perp=0 \Rightarrow\left(j \omega-s_{1}\right)\left(j \omega-s_{2}\right)=0^{*}} \\
& s_{1,2}=-\frac{R}{2 L} \pm \underbrace{\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}}_{\omega^{\frac{R}{\omega^{\prime}}}} \\
& \text { Note: } s_{2}=s_{1}{ }^{*} \quad \omega^{\prime}=\frac{1}{\sqrt{L C}} \text { for } R \rightarrow 0 \\
& i(t)=R_{e}\left\{I_{0} e^{j \omega^{\prime} t}\right\} e^{-\frac{D^{t}}{2 L}}
\end{aligned}
$$

$$
{ }^{*} \text { Let } j \omega=s_{i} ; \text { recall: } a s^{2}+b s+c=0 \quad s_{i}=\frac{\left(-b \pm \sqrt{b^{2}-4 a c}\right)}{2 a}
$$

RLC RESONATOR WAVEFORMS

Series resonator current $i(t)$:

$$
i(t)=R_{e}\left\{\underline{I}_{0} e^{j \omega^{\prime t}}\right\} e^{-\frac{R}{2 L} t}=I_{0} \cos \left(\omega^{\prime} t+\phi\right) e^{-\frac{R}{2 L} t}
$$

Energy w(t):

$$
\begin{aligned}
& w_{m}(t)=\frac{1}{2} L i^{2} \propto \cos ^{2}\left(\omega^{\prime} t\right) e^{-\frac{R}{L} t} \\
& w_{e}(t)=\frac{1}{2} C v^{2} \propto \sin ^{2}\left(\omega^{\prime} t\right) e^{-\frac{R}{L}} t
\end{aligned}
$$

Stored energy

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{emax}}=\mathrm{w}_{\max } \\
& \Rightarrow \mathrm{v}_{\max }=\mathrm{i}_{\max } \sqrt{\frac{L}{\mathrm{C}}}
\end{aligned}
$$

COUPLING TO RLC RESONATORS

Thevenin and Norton Equivalent Sources:

Thevenin equivalent source

Norton equivalent

Resonance

Power dissipated $P_{d}(f)$ in $R=R_{L}+R_{T h}$:

$$
\begin{aligned}
P_{\mathrm{d}}(\omega) & =\frac{1}{2} \frac{\left|\underline{V}_{\text {Th }}\right|^{2}}{|\underline{Z}|^{2}} R=\frac{1}{2} \frac{\left|\underline{V}_{T h}\right|^{2}}{\left|R+j \omega L+\frac{1}{j \omega C}\right|^{2}} R \quad \text { Dominant factor near } \omega_{o} \\
& =\frac{\left|\underline{\mathrm{V}}_{\text {Th }}\right|^{2} R \omega^{2}}{2 L^{2}} \left\lvert\,\left(\omega-\frac{1}{\sqrt{L C}}-j \frac{R}{2 L}\right)\left(\omega+\frac{1}{\sqrt{L C}}-j \frac{R}{2 L}\right)^{-2}\right.
\end{aligned}
$$

Half-power frequencies: $\omega \cong \omega_{0} \pm R / 2 L=\omega_{0} \pm \alpha$, where $\omega_{0}=1 / \sqrt{L C}$

$$
\text { so: } \Delta \omega=2 \alpha=\omega_{0} / Q \text { and } Q=\omega_{0} / \Delta \omega
$$

RESONATOR Q

General derivation of Q (all resonators):

$$
\begin{array}{ll}
W_{T} \cong w_{T o} e^{-\omega^{\prime} / t Q} & \text { (total stored energy [J]) } \\
P_{d}=-d W_{T} / d t \cong\left(\omega^{\prime} / Q\right) w_{T} & \text { (power dissipated [W]) } \\
Q \cong \omega^{\prime} W_{T} / P_{d}{ }^{*} & \text { (resonator } Q \text { ["radians" is dimensionless]) }
\end{array}
$$

Internal, external, and loaded $Q\left(Q_{1}, Q_{E}, Q_{L}\right)$:
$Q_{l}=\omega^{\prime} w_{T} / P_{d l} \quad\left(P_{d l}\right.$ is power dissipated internally, in $\left.R\right)$
$Q_{E}=\omega^{\prime} W_{T} / P_{d E} \quad\left(P_{d E}\right.$ is power dissipated externally, in $\left.R_{T h}\right)$
$Q_{L}=\omega^{\prime} w_{T} / P_{d T} \quad\left(P_{d T}\right.$ is the total power dissipated, in R and $\left.R_{T h}\right)$

$$
P_{d T}=P_{d l}+P_{d E} \Rightarrow Q_{L}^{-1}=Q_{1}^{-1}+Q_{E}^{-1}
$$

$$
Q_{L} \approx \omega_{0} / \Delta \omega \quad \text { Perfect Match: } Q_{1}=Q_{E}
$$

${ }^{*}$ IEEE definition: $\mathrm{Q}=\omega_{0} \mathrm{w}_{\mathrm{T}} / \mathrm{P}_{\mathrm{d}}$

MATCHING TO RESONATORS

Transmission line feed:

$$
\text { At } \begin{aligned}
\omega_{0}: \quad|\underline{\Gamma}|^{2} & =\left|\frac{R-Z_{o}}{R+Z_{o}}\right|^{2} \\
& =0 \quad \text { if matched, } R=Z_{o} \\
& =1 / 9 \quad \text { if } R=Z_{o} / 2 \text { or } 2 Z_{o}
\end{aligned}
$$

Behavior away from resonance:

Series resonance: Open circuit
Parallel resonance: Short circuit

EXAMPLE \#1 - CELL PHONE FILTER

 Bandpass filter specifications:Looks like a short circuit far from ω_{0}
At ω_{0} : reflect $1 / 9$ of the incident power and let $\underline{\Gamma}<0$
$\omega_{0}=5 \times 10^{9}$ and $\Delta \omega=5 \times 10^{7}$
$Z_{o}=100-$ ohm line

Filter solution:

Parallel resonators look like short circuits far from ω_{0}

$$
\begin{aligned}
& |\underline{\Gamma}|^{2}=1 / 9 \text { and } \underline{\Gamma}<0 \Rightarrow \underline{\Gamma}=-1 / 3 \text { at } \omega_{0} . \quad \underline{Z}=Z_{o} \frac{1+\underline{\Gamma}}{1-\underline{\Gamma}} \Rightarrow R=50 \Omega \\
& \sqrt{L C}=1 / \omega_{o}=\left(5 \times 10^{9}\right)^{-1} \\
& Q_{L}=R^{\prime} / \sqrt{L / C}(\text { parallel }) \Rightarrow \sqrt{L / C}=R^{\prime} / Q_{L}=33 / 100=0.33\left(R^{\prime}=R / / Z_{o}\right) \\
& \left.L=\sqrt{L C} \sqrt{L / C}=\left(5 \times 10^{9}\right)^{-1} \times 0.33=6.67 \times 10^{-12}[H y]\right\} \text { Small, hard to } \\
& C=\sqrt{L C} / \sqrt{L / C}=\left(5 \times 10^{9}\right)^{-1} / 0.33=6 \times 10^{-10}[F] \quad \text { build, use TEM? }
\end{aligned}
$$

EXAMPLE \#2 - BAND-STOP FILTER

Filter specifications:

Far from ω_{0} the load is matched (signal goes to amplifier R)
At ω_{0} reflect all incident power; let $\underline{\Gamma}=-1$ (short circuit)
$\omega_{0}=5 \times 10^{6}$
$\Delta \omega=5 \times 10^{4}$ (rejected band, notch filter) $\Rightarrow Q=100$
$Z_{o}=100$-ohm line

Filter solution:

Lossless series resonators look like short circuits at ω_{0} $R=Z_{o}=100 \Omega \Rightarrow|\Gamma|^{2}=0$ at ω far from ω_{0}
$\sqrt{L C}=1 / \omega_{0}=\left(5 \times 10^{6}\right)^{-1}$
$Q_{L}=\sqrt{L / C} / R_{L}$ (series) $\Rightarrow \sqrt{L / C}=R_{L} Q_{L}=50 \times 100=5000$
$L=\sqrt{L C} \sqrt{L / C}=\left(5 \times 10^{6}\right)^{-1} \times 5000=10^{-3}[\mathrm{Hy}]$
$C=\sqrt{L C} / \sqrt{L / C}=\left(5 \times 10^{6}\right)^{-1} / 5000=4 \times 10^{-11}[F]$

MIT OpenCourseWare
|http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

