LIMITS TO COMPUTATION SPEED

Devices:

Carrier transit and diffusion times

$$
(f=m a, v<c)
$$

$R C \cong \varepsilon / \sigma ; R L, L C$ time constants

Beyond scope of 6.013 (read Section 8.2)
Interconnect, short lines << λ :
Wire resistance $R \propto D / r^{2}$
Capacitance $C=\varepsilon A / d \propto D^{2 / d}$
$\tau=R C \propto D^{3} / r^{2} d \cong$ const. if $D: r: d=$ const.
R is high for polysilicon, C is high for thin gaps

L / R and $\tau=\sqrt{\text { LC }}$ scale well with size and do not limit speed
Interconnect, long lines $>\sim \lambda / 8$:
Propagation delay: $\mathrm{c}=1 / \sqrt{\mu \varepsilon}<3 \times 10^{8}\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \quad\left(\varepsilon\right.$ might be $\sim 2 \varepsilon_{0}$) Reflections at wire and device junctions, unless carefully designed Resistive loss
Radiation and cross-talk (3-GHz clocks imply 30-GHz harmonics)

WIRED INTERCONNECTIONS

Transverse EM Transmission Lines:

TEM: $\overline{\mathrm{E}}_{\mathrm{z}}=\overline{\mathrm{H}}_{\mathrm{z}}=0$

Parallel wires

Coaxial cable

Parallel plates

Stripline
Arbitrary cross-section $\neq \mathrm{f}(\mathrm{z})$

PARALLEL-PLATE TRANSMISSION LINE

Boundary Conditions:

$\overline{\mathrm{E}}_{/ /}=\overline{\mathrm{H}}_{\perp}=0$ at perfect conductors
Uniform Plane Wave Solution:
x-polarized wave propagating in
$+z$ direction in free space
$\bar{E}=\hat{x} E_{+}\left(t-\frac{z}{c}\right)$
$\bar{H}=\hat{y}\left(\frac{1}{\eta_{0}}\right) E_{+}\left(t-\frac{z}{c}\right)$

$$
\bar{S}=\bar{E} \times \bar{H}
$$

Currents in Plates:
$\oint_{C} \bar{H} \cdot d \bar{s}=\iint_{A} \bar{J} \cdot d \bar{a}=I(z)$
$\mathrm{I}(\mathrm{z})=\mathrm{H}(\mathrm{z}) \mathrm{W}$, independent of path C Surface Currents $J_{s}\left(\mathrm{~A} \mathrm{~m}^{-1}\right)$: $J_{S}(z)=\hat{n} \times \bar{H}(z) \quad\left[\mathrm{A} \mathrm{m}^{-1}\right]$

TRANSMISSION LINE VOLTAGES

Voltages between plates:
Since $H_{z}=0 \Rightarrow \oint_{C} \bar{E} \cdot d \bar{s}=0$ at fixed z, $\int_{1}^{2} \overline{\mathrm{E}} \cdot \mathrm{d} \overline{\mathrm{s}}=\Phi_{1}-\Phi_{2}=\mathrm{V}(z)$
$V(z)$ is uniquely defined

Surface charge density $\rho_{s}(z)\left[\mathrm{C} \mathrm{m}^{-2}\right]$:
$\hat{n} \bullet \varepsilon \bar{E}(z)=\rho_{S}(z) \quad$ (Boundary condition; from $\nabla \bullet \bar{D}=\rho$
Integrate $\overline{\mathrm{E}}, \overline{\mathrm{H}}$ to find $\mathrm{v}(\mathrm{t}, \mathrm{z}), \mathrm{i}(\mathrm{t}, \mathrm{z})$
$v(t, z)=\int_{1}^{2} \bar{E} \bullet d \bar{s}=d \times E_{+}(t-z / c)$ here, where $\bar{E}=\hat{x} E_{+}(t-z / c)$
$i(t, z)=\oint_{C} \bar{H} \cdot d \bar{s}=\left(W / \eta_{0}\right) E_{+}(t-z / c)$, where $\bar{H}=\hat{y} E_{+}(t-z / c)$
$\mathrm{v}(\mathrm{t}, \mathrm{z})=\mathrm{Z}_{\mathrm{o}} \mathrm{i}(\mathrm{t}, \mathrm{z})$ [if there is no backward propagating wave]
$Z_{o}=\eta_{0} d / W$ [ohms] "Characteristic impedance"
Note: $v(z)$ violates $K V L$, and $i(z)$ violates $K C L$

TELEGRAPHER'S EQUATIONS

Equivalent Circuit:

$$
\overline{\mathrm{E}} \bullet \hat{\mathrm{Z}}=\overline{\mathrm{H}} \bullet \hat{\mathrm{z}}=0 \quad(\mathrm{TEM})
$$

L [Henries m^{-1}], C [Farads m^{-1}]

Difference Equations:

$$
\begin{aligned}
& v(z+\Delta z)-v(z)=-L \Delta z \frac{d i(z)}{d t} \quad \text { Limit as } \Delta z \rightarrow 0: \quad \frac{d v(z)}{d z}=-L \frac{d i(z)}{d t} \\
& i(z+\Delta z)-i(z)=-C \Delta z \frac{d v(z)}{d t} \\
& \underbrace{\frac{d i(z)}{d z}=-C \frac{d v(z)}{d t}}_{\frac{d^{2} v}{d z^{2}}=L C \frac{d^{2} v}{d t^{2}}}
\end{aligned}
$$

SOLUTION: TELEGRAPHER'S EQUATIONS

Wave Equation: $\frac{d^{2} v}{d z^{2}}=L C \frac{d^{2} v}{d t^{2}}$
Solution:

$$
\begin{aligned}
& v(z, t)=f_{+}(t-z / c)+f_{-}(t+z / c) \\
& f_{+} \text {and } f_{-} \text {are arbitrary functions }
\end{aligned}
$$

Substituting into Wave Equation:
$\left(1 / c^{2}\right)\left[f_{+}^{\prime \prime}(t-z / c)+f_{-}^{\prime \prime}(t+z / c)\right]=L C\left[f_{+}^{\prime \prime}(t-z / c)+f_{-}^{\prime \prime}(t+z / c)\right]$
Therefore:

$$
c=1 / \sqrt{L C}=1 / \sqrt{\mu \varepsilon}
$$

Current l(z,t):
Recall: $\quad \frac{d i(z)}{d z}=-C \frac{d v(z)}{d t}=-C\left[f_{+}^{\prime}(t-z / c)+f_{-}^{\prime}(t+z / c)\right]$
Therefore: $\quad i(z, t)=c C\left[f_{+}(t-z / c)-f_{-}(t+z / c)\right]$
Where: $\quad c C=C / \sqrt{L C}=\sqrt{C / L}=Y_{0} \quad$ "Characteristic admittance"

$$
Z_{o}=1 / Y_{0}=\sqrt{\mathrm{L} / \mathrm{C}} \text { ohms "Characteristic impedance" }
$$

Therefore: $\quad \mathrm{i}(\mathrm{z}, \mathrm{t})=\mathrm{Y}_{0}\left[\mathrm{f}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})-\mathrm{f}_{-}(\mathrm{t}+\mathrm{z} / \mathrm{c})\right]$

ARBITRARY TEM LINES

Can we estimate L and C ?

$\neq \mathrm{f}(\mathrm{z})$

$Z_{o}=\sqrt{\frac{L}{C}}=\frac{\sqrt{L C}}{C}$ where $L C=\mu \varepsilon$
$\mathrm{C}_{\square}=$ capacitance $/ \mathrm{m}=\frac{\varepsilon \mathrm{A}}{\mathrm{d}}=\varepsilon$
$\mathrm{C}=\mathrm{nC}_{\square}$ for n parallel square incremental capacitors ($\mathrm{C}_{\square}=\varepsilon\left[\mathrm{Fm}^{-1}\right]$)
$\mathrm{C}=\mathrm{C}_{\square} / \mathrm{m}$ for m capacitors C_{\square} in series
Therefore:

$$
\begin{aligned}
& C=n C_{\square} / m=n \varepsilon / m \quad[F a r a d s / m] \quad \underbrace{}_{N \text { cells }} \\
& Z_{o}=\frac{\sqrt{L C}}{C}=\frac{\sqrt{\mu \varepsilon}}{n \varepsilon / m}=\eta_{0} \frac{m}{n} \text { ohms }\left[\eta_{0}=\sqrt{\mu / \varepsilon}\right] ; Z_{\text {osingle cell }}=377 \Omega
\end{aligned}
$$

TRANSMISSION LINE VOLTAGES

Matching boundary conditions:
$\mathrm{v}(\mathrm{t})$ and $\mathrm{I}(\mathrm{t})$ are continuous at $\mathrm{z}=0$
$\square_{i(z, t)=\frac{1}{Z_{0}} v_{s}(t-z / c)}^{v(z, t)=v_{s}(t-z / c)}$

MIT OpenCourseWare
|http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

