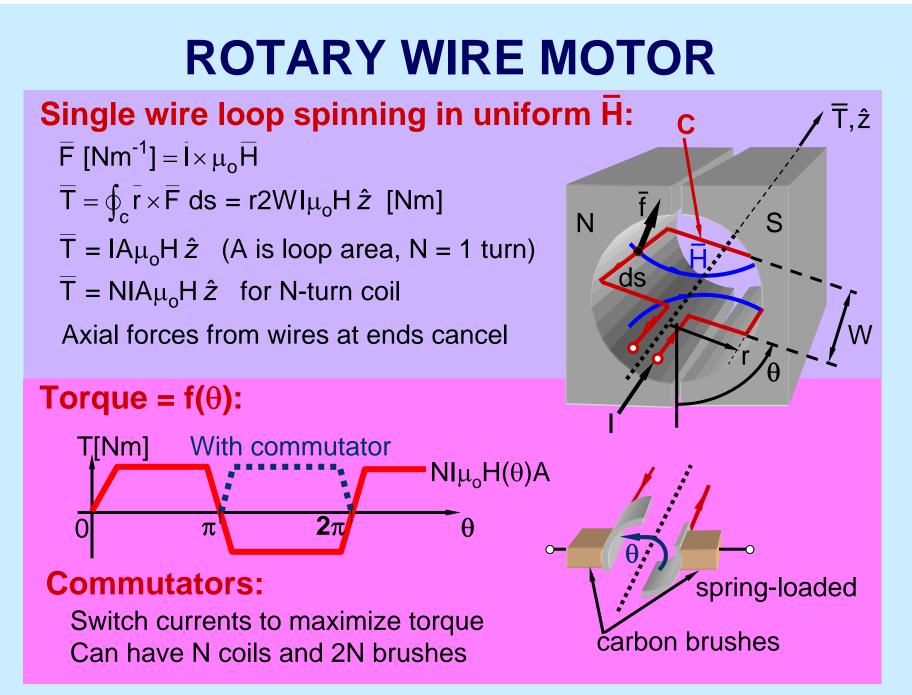
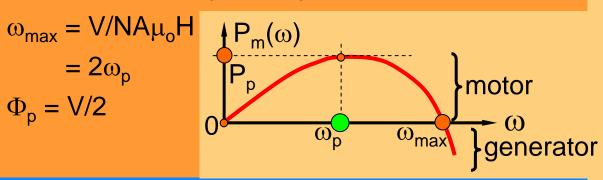
MAGNETIC FORCES ON FLAT SURFACES Lorentz Force Law: $\overline{f}_m = q\overline{v} \times \mu_0 \overline{H}$ [N] **F** [N/m] s << W \overline{F} [N/m] = Nqv₁ × $\mu_0 \overline{H}_{12} = I_1 × \mu_0 \overline{H}_{12}$ S $\oint_{C} \overline{H} \bullet d\overline{s} = \oiint_{\Delta} \overline{J} \bullet d\overline{a} = I_{2} \cong 2H_{12}W$ $\overline{\mathbf{F}} = \hat{\mathbf{z}}\mu_0 \mathbf{I}_1 \mathbf{I}_2 / 2W \text{ [N/m]}$ Currents exert no net force on themselves **Total H method:** $\oint_{C} \overline{H} \bullet d\overline{s} = \oiint_{A} \overline{J} \bullet d\overline{a} = \begin{cases} 0 \text{ for } C_{1} \\ I \text{ for } C_{2} \end{cases}$ Let $I_{1} = I_{2} = I = H_{0}W$ \overline{F}_1 [N/m] = $I_1 \times \mu_0 < \overline{H} >$ conductor $\overline{H} = 0$ $= \hat{z} I_1 \mu_0 \frac{H_0}{2} = \hat{z} \mu_0 I_1 I_2 / 2W [N/m]$ \mathbf{I}_1 $' < H > = H_0/2$ $\overline{\mathsf{P}} = \overline{\mathsf{F}}/\mathsf{W} = \frac{\hat{z}_{-1}^{1}\mu_{o}\mathsf{H}_{o}^{2}}{[\mathsf{N}/\mathsf{m}^{2}]}$ magnetic pressure "Magnetic pressure"

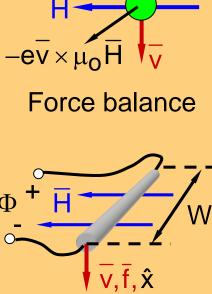


MOTOR BACK VOLTAGE

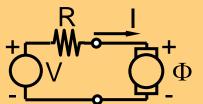
Force f_e on electron inside moving wire:

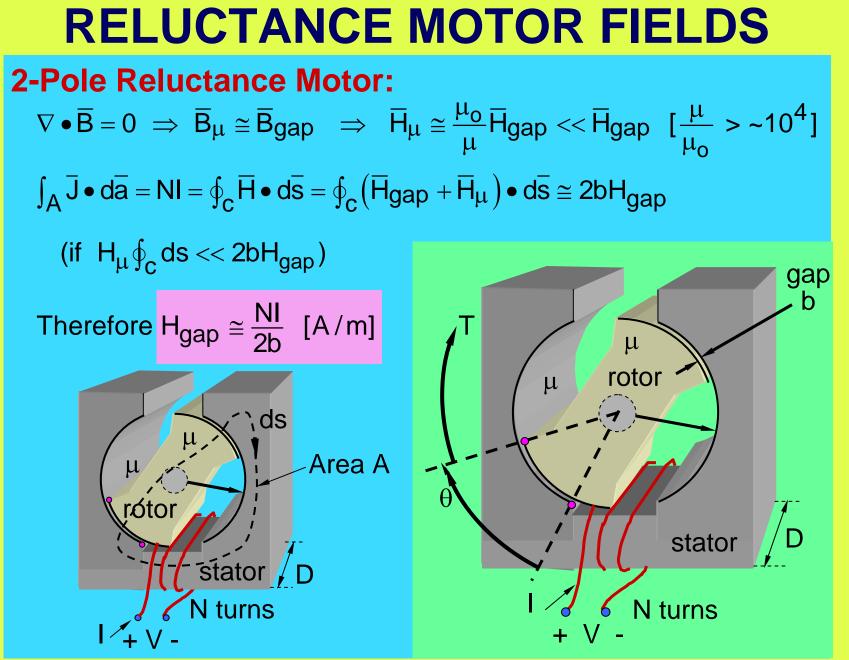
Open-circuit wire: $\overline{f}_e = -e(\overline{E}_e + \overline{v} \times \mu_0 \overline{H}) = 0$ $\Rightarrow \overline{E}_e = -\overline{v} \times \mu_0 \overline{H}$ inside Open-circuit voltage: $\Phi = E_e W = v \mu_0 H W [V] -ev \times \mu_0$ **Mechanical power output, N turns:** $P_m = \omega T = \omega NIA\mu_0 H$ [W] $I = (V - \Phi)/R$ $\Phi = 2Nv\mu_0HW = 2N\omega r\mu_0HW = NA\mu_0H\omega$ $P_m = \omega N(V - NA\mu_0H\omega)A\mu_0H/R = \omega K_1 - \omega^2 K_2$

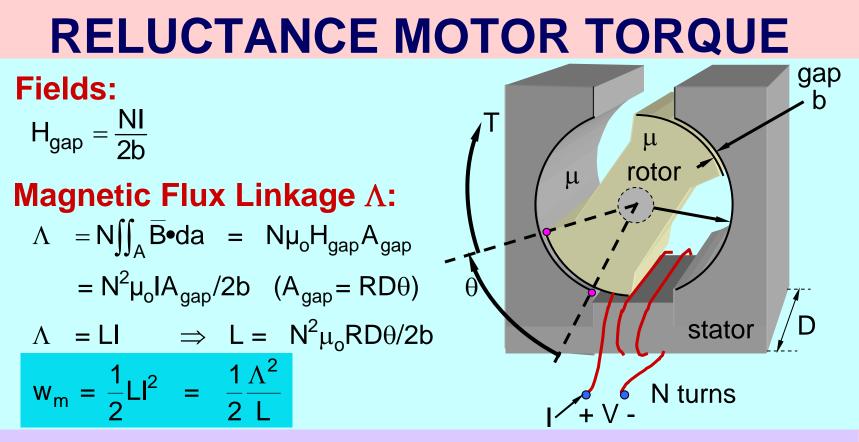




-eĘe







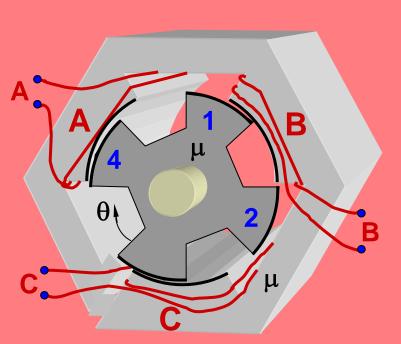
Set V = dA/dt = 0: $T = -\frac{dw_{m}}{d\theta} = -\frac{\Lambda^{2}}{2}\frac{dL^{-1}}{d\theta} = \frac{\Lambda^{2}}{2}\frac{2b}{N^{2}\mu_{o}RD\theta^{2}} \quad [\propto l^{2}], \Lambda = N\mu_{o}H_{gap}R\theta D$ $= \frac{1}{2}\mu_{o}H_{gap}^{2}2bDR = \frac{W_{gap}}{d\theta}\frac{dV_{olume}}{d\theta} \quad [Nm] \text{ Torque}$ We power coil until overlap is maximum, then coast until it is zero Magnetic pressure = Energy density [J/m^{3} = N/m^{2}]

¾-POLE RELUCTANCE MOTOR

Winding Excitation Plan:

First excite windings A and B, pulling pole 1 into pole B.Pole area A = constant, temporarily.

When $\Delta \theta = \pi/3$, excite B and C. When $\Delta \theta = 2\pi/3$, excite C and A. Repeating this cycle results in nearly constant clockwise torque.



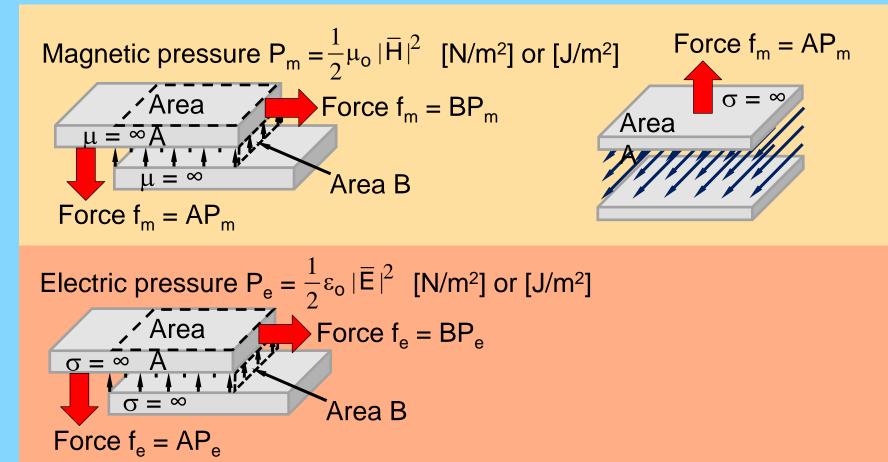
To go counter-clockwise, excite BC, then AB, then CA.

Torque:

Only one pole is being pulled in here; the other excited winding has either one rotor pole fully in, or one entering and one leaving that cancel. Many pole combinations are used (more poles, more torque).

ELECTRIC AND MAGNETIC PRESSURE

Electric and magnetic pressures equal the field energy densities, J/m³ Both field types only pull along their length, and only push laterally The net pressure is the difference between two sides of any boundary



FORCES ON NEUTRAL MATTER

3 < 3

Ē

Kelvin polarization force density:

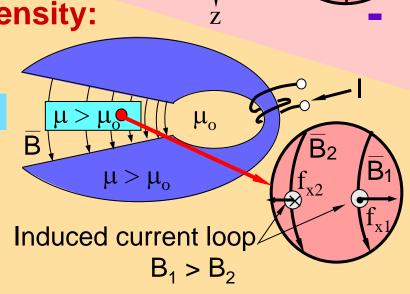
If $\nabla \times \overline{E} = 0 = \nabla \bullet \overline{E}$, then: Field gradiants $\bot \overline{E} \Rightarrow \overline{E}$ is curved

Curved \overline{E} pulls electric dipoles into stronger field regions for $\varepsilon > \varepsilon_o$

Kelvin magnetization force density:

If $\nabla \times \overline{H} = 0 = \nabla \bullet \overline{B}$, then: Field gradiants $\bot \overline{H} \Rightarrow \overline{H}$ is curved

Curved \overline{H} pulls current loops into stronger field regions for $\mu > \mu_o$



VO- X

d

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.