Solutions to Problem Set 12

12.1 (a) $\theta_{\mathrm{c}}=\sin ^{-1}\left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=\sin ^{-1}\left(\mathrm{c}_{1} / \mathrm{c}_{2}\right)=\sin ^{-1}\left(\varepsilon_{2} / \varepsilon_{1}\right)^{0.5}=80.9$ degrees
(b) $\alpha_{\mathrm{x}}=\left(\mathrm{k}_{\mathrm{z}}^{2}-\mathrm{k}_{0}^{2}\right)^{0.5}$ where $\mathrm{k}_{z} / \mathrm{k}_{0}=\sin 85^{0}$. It follows that $\alpha^{-1}=0.60 \lambda_{0}$
(c) $\mathrm{D}=\sim 4 \lambda_{0}$. Note that decay is rapid relative to D , so we might guess $\mathrm{D}=\sim 0.6\left(\lambda_{x} / 2\right)$ where $\lambda_{\mathrm{x}}=\lambda_{\mathrm{Z}} \tan \theta_{\mathrm{i}}$ and $\lambda_{\mathrm{Z}}=\sim \lambda_{0} / 2$.
12.2 (a) $3 . \mathrm{A}_{43}$ is large, not A_{42} or A_{41}. Also, atoms can't leave 3 because A_{32} and $\mathrm{A}_{31} \cong 0$
(b) 33.3 percent, since each atom absorbs E_{41} from the pump, but emits only E_{32}.
12.3 (a) $75 \mathrm{GHz} . \mathrm{f}_{\mathrm{n}}=\mathrm{c} / \lambda_{\mathrm{n}}$ where $\mathrm{n} \lambda_{\mathrm{n}} / 2=2 \times 10^{-3} . \Delta \mathrm{f}_{\mathrm{n}}=\mathrm{c} 10^{3} / 4=7.5 \times 10^{10}$.
(b) $4+$. Note, 0.1 percent of $\mathrm{f}=\mathrm{c} / 10^{-6}$ is $10^{-3} \times 3 \times 10^{14}=3 \times 10^{11}=4 \times \Delta \mathrm{f}$.
(c) $4 \pi \times 10^{5} . \mathrm{Q}_{\mathrm{c}}=\omega_{\mathrm{o}} \mathrm{W}_{\mathrm{T}} / \mathrm{P}_{\mathrm{d}}=\left(2 \pi \mathrm{c} / 10^{-6}\right)\left(2 \times 10^{-3} \times 4 \varepsilon_{0} \mathrm{E}^{2} / 8\right) /\left(10^{-2} \mathrm{E}^{2} / 2 \eta\right)=\mathrm{f} / \Delta \mathrm{f} ; \eta=\eta_{\mathrm{o}} / 2$.
12.4 (a) A_{00} has cutoff $\mathrm{f}_{00}=0 \mathrm{~Hz} . \mathrm{f}_{01}=\mathrm{f}_{10}=\mathrm{c}_{s} / \lambda_{01}=\mathrm{c}_{s} /\left(2 \times 5 \times 10^{-3}\right)=34 \mathrm{kHz}$.
$\mathrm{f}_{11}=2^{0.5} \times 34 \mathrm{kHz}$.
(b) $\mathrm{d}=0.02=\lambda_{1} / 4=0.75 \lambda_{2} . \mathrm{f}=\mathrm{c}_{\mathrm{s}} / \lambda . \mathrm{f}_{001}=340 / 0.08=4.25 \mathrm{kHz} ; \mathrm{f}_{002}=12.75 \mathrm{kHz}$.
(c) Only the f_{oo} mode propagates at audible frequencies, reducing confusion. The resonance near 4 kHz could produce problems, except that most speech information lies at lower frequencies, and most people have poorer hearing above $\sim 12+\mathrm{kHz}$. Music could be affected, however.
(d) Reinforcement occurs when $n \lambda_{n}=6 \mathrm{~cm}$ (no p phase reversal at walls), so $f_{n}=c_{s} / \lambda_{n}=$ $n 340 / 0.06 \cong \mathrm{n} \times 5.67 \mathrm{kHz}$. Nulls occur if $0.06=(2 \mathrm{n}+1) \lambda_{\mathrm{n}} / 2$, or $\mathrm{f} \cong 2.8,8.4, \ldots \mathrm{kHz}$. Forest footfalls yield white noise, and the frequency at which the ear perceives nulls in such white noise indicates direction, even from behind--very helpful in the wild.
(e) $\mathrm{Q}=\omega_{0} \mathrm{~W}_{\mathrm{T}} / \mathrm{P}_{\mathrm{d}} . \omega_{\mathrm{o}}=2 \pi \times 4.25 \mathrm{kHz} . \mathrm{W}_{\mathrm{T}}=2 \mathrm{~W}_{\mathrm{p}}=\left(2 \mathrm{p}^{2} / 8 \gamma \mathrm{P}_{\mathrm{o}}\right)$ area \times length. $\mathrm{P}_{\mathrm{d}}=$ area \times $\left(1-|\Gamma|^{2}\right) p^{2} / 2 \eta_{\mathrm{s}} . \gamma=1.4, \mathrm{P}_{\mathrm{o}}=1.01 \times 10^{-5} . \eta_{\mathrm{s}}=425 . \mathrm{Q}=0.80 /\left(1-|\underline{\Gamma}|^{2}\right)$. Thus $\mathrm{Q}=1.6$ for $|\underline{\Gamma}|^{2}=0.5$, and for the next resonance $\mathrm{Q}=4.8$.
12.5 (a) Since $<\mathrm{I}(\mathrm{t})\rangle=|\underline{\mathrm{p}}|^{2} / 2 \eta_{\mathrm{s}} \Rightarrow|\mathrm{p}|=(2 \times 425 \times 100)^{0.5}=206 \mathrm{~N} / \mathrm{m}^{2}$.
(b) $\langle\mathrm{I}(\mathrm{t})\rangle=\left.\eta_{\mathrm{s} \mid \underline{\mathrm{u}}}\right|^{2} / 2 \Rightarrow|\underline{\mathrm{u}}|=(2 \times 100 / 425)^{0.5}=0.69 \mathrm{~m} / \mathrm{s}$.
(c) $\mathrm{x}=\int \mathrm{udt} \Rightarrow \mathrm{D}=2 \mid \underline{\underline{u}} / / \omega=2 \times 0.69 /(2 \pi 1000)=0.22 \mathrm{~mm}$.
(d) $\theta_{\mathrm{c}}=\sin ^{-1}\left(\mathrm{c}_{\mathrm{sc}} / \mathrm{c}_{\mathrm{sw}}\right)=\sin ^{-1}(0.99)=81.9^{\circ}$.
(e) At θ_{c} there is no decay, so $\alpha=0$.
12.6 (a) $\eta_{o} / \eta_{d}=\rho_{o} C_{0} / \rho_{d} C_{d} \cong 10^{3} \times 330 /\left(10^{6} \times 1050\right)=3.14 \times 10^{-4}$.
(b) $\underline{\Gamma}=\left(\underline{Z}_{n}-1\right) /\left(\underline{Z}_{n}+1\right)$ where $\mathrm{Z}_{\mathrm{n}}=3.14 \times 10^{-4}$. The door reflects $|\underline{\Gamma}|^{2} \cong 0.9987$.
(d) When $5 \mathrm{~cm}=\mathrm{n} \lambda_{\mathrm{d}} / 2$, there is perfect transmission. $\lambda_{\mathrm{d}}=(1050 / 330) \lambda_{\mathrm{o}}$, so when $\lambda_{\mathrm{d}}=$ 10 cm (for $\mathrm{n}=1$), then $\mathrm{f}_{\text {pass }}=\mathrm{c}_{\mathrm{s}} / \lambda_{0}=330 /(0.1 \times 330 / 1050)=10.5 \mathrm{kHz}$.
(d) Maximum mismatch when $5 \mathrm{~cm}=\lambda_{\mathrm{d}} / 4$ and $\lambda_{\mathrm{d}}=0.2$; so $\mathrm{f}_{\text {stop }} \cong 10500 / 2=5.25 \mathrm{kHz}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

