Solutions to Problem Set 12

- <u>12.1</u> (a) $\theta_c = \sin^{-1}(k_2/k_1) = \sin^{-1}(c_1/c_2) = \sin^{-1}(\epsilon_2/\epsilon_1)^{0.5} = 80.9$ degrees
 - (b) $\alpha_x = (k_z^2 k_o^2)^{0.5}$ where $k_z/k_o = \sin 85^0$. It follows that $\alpha^{-1} = 0.60 \lambda_o$
 - (c) $D = -4\lambda_o$. Note that decay is rapid relative to D, so we might guess $D = -0.6(\lambda_x/2)$ where $\lambda_x = \lambda_z \tan \theta_i$ and $\lambda_z = -\lambda_o/2$.
- 12.2 (a) 3. A_{43} is large, not A_{42} or A_{41} . Also, atoms can't leave 3 because A_{32} and $A_{31} \cong 0$ (b) 33.3 percent, since each atom absorbs E_{41} from the pump, but emits only E_{32} .
- $\begin{array}{ll} \underline{12.3} & (a) & 75 \ \text{GHz.} \ f_n = c/\lambda_n \ \text{where} \ n\lambda_n/2 = 2 \times 10^{-3}. \ \Delta f_n = c10^3/4 = 7.5 \times 10^{10}. \\ (b) & 4+. \ \text{Note, } 0.1 \ \text{percent of} \ f = c/10^{-6} \ \text{is} \ 10^{-3} \times 3 \times 10^{14} = 3 \times 10^{11} = 4 \times \Delta f. \\ (c) & 4\pi \times 10^5. \ Q_c = \omega_o W_T/P_d = (2\pi c/10^{-6})(2 \times 10^{-3} \times 4\epsilon_o E^2/8)/(10^{-2}E^2/2\eta) = f/\Delta f; \ \eta = \eta_o/2. \end{array}$
- <u>12.4</u> (a) A₀₀ has cutoff $f_{00} = 0$ Hz. $f_{01} = f_{10} = c_s / \lambda_{01} = c_s / (2 \times 5 \times 10^{-3}) = 34$ kHz. $f_{11} = 2^{0.5} \times 34$ kHz.
 - (b) $d = 0.02 = \lambda_1/4 = 0.75\lambda_2$. $f = c_s/\lambda$. $f_{001} = 340/0.08 = 4.25$ kHz; $f_{002} = 12.75$ kHz.
 - (c) Only the f_{oo} mode propagates at audible frequencies, reducing confusion. The resonance near 4 kHz could produce problems, except that most speech information lies at lower frequencies, and most people have poorer hearing above ~12+ kHz. Music could be affected, however.
 - (d) Reinforcement occurs when $n\lambda_n = 6$ cm (no p phase reversal at walls), so $f_n = c_s/\lambda_n = n340/0.06 \cong n \times 5.67$ kHz. Nulls occur if $0.06 = (2n+1)\lambda_n/2$, or $f \cong 2.8$, 8.4,... kHz. Forest footfalls yield white noise, and the frequency at which the ear perceives nulls in such white noise indicates direction, even from behind--very helpful in the wild.
 - (e) $Q = \omega_o W_T/P_d$. $\omega_o = 2\pi \times 4.25$ kHz. $W_T = 2W_p = (2p^2/8\gamma P_o)area \times length$. $P_d = area \times (1 |\underline{\Gamma}|^2)p^2/2\eta_s$. $\gamma = 1.4$, $P_o = 1.01 \times 10^{-5}$. $\eta_s = 425$. $Q = 0.80/(1 |\underline{\Gamma}|^2)$. Thus Q = 1.6 for $|\underline{\Gamma}|^2 = 0.5$, and for the next resonance Q = 4.8.
- <u>12.5</u> (a) Since $\langle I(t) \rangle = |\underline{p}|^2 / 2\eta_s \Longrightarrow |\underline{p}| = (2 \times 425 \times 100)^{0.5} = 206 \text{ N/m}^2$.
 - (b) $\langle I(t) \rangle = \eta_s |\underline{u}|^2 / 2 \Rightarrow |\underline{u}| = (2 \times 100 / 425)^{0.5} = 0.69 \text{ m/s}.$
 - (c) $x = \int u dt \Rightarrow D = 2|u|/\omega = 2 \times 0.69/(2\pi 1000) = 0.22$ mm.
 - (d) $\theta_c = \sin^{-1}(c_{sc}/c_{sw}) = \sin^{-1}(0.99) = 81.9^{\circ}$.
 - (e) At θ_c there is no decay, so $\alpha = 0$.
- <u>12.6</u> (a) $\eta_o/\eta_d = \rho_o c_o/\rho_d c_d \cong 10^3 \times 330/(10^6 \times 1050) = 3.14 \times 10^{-4}$.
 - (b) $\underline{\Gamma} = (\underline{Z}_n 1)/(\underline{Z}_n + 1)$ where $Z_n = 3.14 \times 10^{-4}$. The door reflects $|\underline{\Gamma}|^2 \cong 0.9987$.
 - (d) When 5 cm = $n\lambda_d/2$, there is perfect transmission. $\lambda_d = (1050/330)\lambda_o$, so when $\lambda_d = 10$ cm (for n = 1), then $f_{pass} = c_s/\lambda_o = 330/(0.1 \times 330/1050) = 10.5$ kHz.
 - (d) Maximum mismatch when 5 cm = $\lambda_d/4$ and $\lambda_d = 0.2$; so $f_{stop} \approx 10500/2 = 5.25$ kHz.

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.