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Problem Set 9 Solutions 

Problem 9.1 

(a) 

The waveguide will propagate only one mode in the frequency range between the two lowest cutoff frequencies. 
The cutoff frequency for the TE10 (which is the mode with the lowest cutoff frequency) is: � �2cf10 = 24 = 12.5 × 106 [Hz] 

Using the result from part b below, we can say that between 12.5 MHz and 21.4 MHz only one mode will 
propagate. That mode is the TE10 mode. 

(b) 

Inside the waveguide, we expect the mode to follow the dispersion relation. � �2 � �2 � �2ω nπ mπ= k2 + k2 + k2 = + + k2 
c x y z 7 12 z 

In this case, c is the speed of light in air. The cutoff frequency is the frequency at which kz goes from 
imaginary to real (kz = 0). � �2 � �2 � �22πfm,n = nπ + mπ


c 7 12
� �2 � �2 
fm,n = m c + n c 

24 14 

So the cutoff frequencies requested are: � �2 � �2c cf11 = + = 24.8 × 106 [Hz] for the TE11 and TM11 modes. 14 24 � �2cf01 = 14 = 21.4 × 106 [Hz] for the TE01. 

(c) � �2 � �2 � �2 
k2 2π 2πf π= = z c 12λg 

− � �2 � �2 
λ−2 f 1= g c − 2×12 

λg = ( f )2 − ( 1 )2 
−1/2 

= 36.18 [m]c 24 

(d) 

The tangent of the incident angle is equal to the ratio of kz to ky. At 15MHz, only one mode is propagating 
πso we know that ky = 12 . 

kz = k2 − k2 = ( 2π15×106 )2 − ( π )2 
y 3×108 12 

kz ( 24×15×106 

ky 
= 3×108 )2 − 1 = 

√
0.44 

Θi = arctan(
√

0.44) = 0.5857 [rad] = 33.6◦ 

(e) 

To get the magnetic field for the TM11 mode, we start with the electric field pattern for the TE11 mode, 
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replace E with H and then shift the mode spatially to match boundary conditions. 

For TE11: 
E

E (x, y, z) = ◦ [xkˆ sin(k y)cos(k x) − ŷk sin(k x)cos(k y)] e−jk y y 
z z 

¯ 11 ¯ x x yk x◦ 

� � 

� 

So for TM11 we have: 
H

H11(x, y, z) = ¯ 
◦ xkycos(kyy)sin(kxx) − ˆ[ˆ ykxcos(kxx)sin(kyy)] e−jkz z 

¯ k ◦ 

If we assume the dimension ’a’ is along x and ’b’ is along y, then we can write 

H ◦ xH11(x, y, z) = ¯ ˆmπ cos( mπ y)sin( nπ y nπ cos( nπ x)sin( mπ y) e−jkz z 

¯ k ◦ b b a x) − ˆ a a b 

(f) 

From the expression in part e, we know that the magnetic fields are parallel to the sidewalls of the rectangular 
waveguide. So any currents generated must be along ẑ. In that case, if we were to cut thin slots along ẑ no 
currents would be interrupted and the waveguide mode would not be significantly perturbed. 

(g) 

To find the distance δ we need to first find kz for the wave. 

The AM signal will penetrate furthest for the lowest mode allowed by the waveguide. From part (a) we know 
that this is the TE10 mode, with ky = π/12. 

kz = (2πf/c)2 − (π/12)2 = j0.261 

δ = kz
−1 = 3.83 [m] 

(h) 

Signals in the range 88-108 MHz can propagate in several different modes. Each of these modes propagates 
down the tunnel at a different speed, so there will be a phase shift between the signal from the different 
modes. This will result in interference in the signal due to the phase difference between different modes. 
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Problem 9.2 

(a) 

By checking boundary conditions, we see that the lowest order resonance will require two of (m,n,p) to be 
non-zero. Knowing the relation between frequency and angular frequency, we can rewrite equation 9.4.3 to 
get the frequency associated with each resonance. � �0.5
= ωm,n,p = c ( m )2 + ( n )2 + ( p )2
fm,n,p 2π 2a 2b 2d 

The lowest frequency with two of (m,n,p) non-zero will have m and p equal to one (since they are associated 
with the longest dimensions in this case). � �0.5 
f1,0,1 = c ( 2×0

1 
.04 )

2 + ( 2×0
0 
.03 )

2 + ( 2×0
1 
.05 )

2 = 4.8 × 109 [Hz] 

(b) 

The mode associated with the lowest frequency is the TE101 mode. The TM101 mode shares the same cutoff 
frequency. 

(c) 

TE101, TE011, TM110 

There are two approaches to ranking the modes based on resonance frequency. First, you can put the mode 
numbers into the frequency equation derived in part (a) from equation 9.4.3. Second, you can recognize that 
lower resonance frequency is associated with longer dimensions. So the lowest frequency should have 1’s 
associated with the two longest dimensions, the next lowest should have 1’s along the longest and shortest 
dimensions, then the highest will have 1’s along the two shortest dimensions. 

(d) 

We can copy this directly from equation 9.4.5. 

Ē(x, y, z) = x̂E sin( πy )sin( πz )
¯ ¯ ◦ a d


E(x, y, z, t) = Re{E
¯
¯(x, y, z)ejωt} = x̂sin( πy )sin(πz )Re{E

¯ ◦ e
jωt}
a d 

(e) 

First we choose the time when the field has maximum value. 

E(x, y, z, t�) = x̂Emaxsin( πy )sin( πz )a d 

= 1 ε|E(x, y, z, t�)2 = 1 εE2 sin2( πy )sin2( πz )We 2 | 2 max a d 

Now integrate the result over the volume. 

= b εE2we,max 8 max 

(f) 

At any point, the power dissipated will be Pdiss(x, y, z) = JE(x, y, z, t) = σE2(x, y, z, t). 

Pdiss(x, y, z) = σE2 sin2( πy )sin2( πz )cos2(ωt)max a d 

To get the total instantaneous power dissipated we need to integrate over the volume. 

Pdiss(x, y, z) = b σE2 cos2(ωt)4 max

The time average will be one half the maximum value. 
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 < P b
diss >= σE2 

8 max 

(g) 

b 2 

 = ω <w > = 2  εE
Q 101 t 8 max 

 <P > ω101 b 2 2 = ω ε
101

◦ = (2π 
diss  σEmax cos (ωt) σ 

4

τ Q
101 = = ε◦

ω101 σ

(h) 

The cavity 1/e energy decay time is the same as the

(i) 

From equation 9.4.13 in the course notes we know th

× 4.8 × 109) ε ◦
σ

 electric field relaxation time. 

at the change in resonance due to a perturbation of the 
cavity will be related to the change in stored electric and magnetic energy. 
ΔwT = Δf = Δvolume We−Wm 
wT f wT 

This equation tells us that if we decrease the volume slightly where the electric field is larger than the 
magnetic field we will reduce the resonant frequency. If we decrease the volume slightly where the electric 
and magnetic fields are the same then the resonant frequency will remain unchanged. 

So, slightly indenting the cavity in the center of the top and bottom faces (see picture below) will reduce 
the resonant frequency. At the edges of the top and bottom face, the electric field goes to zero. So at some 
boundary between the center and edges the electric and magnetic fields will have the same value, and slightly 
indenting the cavity at this boundary will not change the resonant frequency. 

The actual boundary will be rounder than what is shown in the picture. 
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Problem 9.3 
db 

G 10transmitter = 10 
G

= 10 

Greciever = 10 
Gdb 
10 = 10 

 8 
λ c 3 10

60MHz = =  f 60
×
×106 = 5

(a) 

First we need to calculate the minimum power needed to transmit the information. 
 Precieved,min = 18 × 106 bits  s × 10−16 Joules 

 = 18 × 10−10 [W bit ]

2  P λ
recieved,min = Ptransmitted,minGtransmitterGreciever 

�
4πr2 

  
2 2 3 2 2 

P = 
 

P 1 4πr
transmitted,min recieved,min 

�
� �

= 18 × 4
 10−10 1 π(60×10 ) = 0.409   [W Gtransmitter Greciever λ 100 5

We want a margin of 20dB, so 

� �
�  

20 = 10log PT 
10 Ptransmitted,min 

PT = 100 

�
× Ptransmitted,min = 40.9 [W ] 

(b) 

1 I = P G = 40.9×10 = 9.04 × 10−9 [W/m2
T transmitter 4πr2 4π(60×103)2 ] 

(c) 

=
2

 
 2λ   

 5  62.5 Aeff Greciever  .  m2  4π = 10 4π = π = 19 89 [ ]

]
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Problem 9.4 

G = 10 

λ = f
c = 0.005 [m] 

(a) (Minimum Power)


Step 1: Find the intensity at the target

G 10Iped = Pt 4πr2 = Pt 4π(50)2 

Step 2: Find the intensity at the reciever, given the cross section of the target 

1 10−2 
Irec = Ipedσ 4π(50)2 = Iped 4π(50)2 

Step 3: Find the power at the reciever, given the intensity at the reciever 

Prec = IrecAeff = IrecG 4
λ
π 

2 
= Irec 

10
4π
λ2 

Step 4: Combine 

= Pt 
10 10−2 10λ2 

= Pt(4π)−3(50)−4(0.005)2Prec 4π(50)2 4π(50)2 4π 

So the power we need to send is


Pt = Prec(4π)3(50)4(0.005)−2 = 10−12(4π)3(50)4(0.005)−2 = 0.25(4π)3 = 16π3 = 496 [W ]


(b) (Voltage)


P = IV = V 2/R = V 2/100


V = 
√

100 × P = 
√

100 × 496 = 223 [V ]
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