
Problem Set 3 Solutions 

Problem 3.1 

(a) Using the force/energy equation, we know that the force attracting the two plates will be equal to the 
partial derivative of the stored energy in the system with respect to the changing variable (in this case, d). 

f = ∂we 
∂d ⊥ 

We know that the energy stored in a capacitor with a fixed charge Q on the plates is ωe = Q2d , so the force 2εA 
attracting the two plates is 

∂we ∂ Q2d Q2 

f = = = ⊥ ∂d ∂d 2εA 2εA 

Noting that Q = εAV we can cast the result in terms of the applied voltage d 

V 2ε bL 
f = ◦ (1)⊥ 2d2 

It’s also possible to solve this problem using the pressure due to the electric field on the conductor, f ̄= −PeA. 
We know Pe = −ε ◦ 

2 
E◦ 

2 

, and we can relate E and A to the voltage and dimensions of the overlap. 

f = −PeA = ε 
2
◦
d
V 
2

2 

bL = V 2

2
ε
d
◦
2 
bL 

Which is the same as the result using the force/energy relation. 

(b) Again we can use the force/energy equation but in this case the derivative is taken with respect to b, 
and has a negative sign since pulling the plates apart horizontally decreases b. 

∂we ∂ Q2d Q2df� = − ∂b = − ∂b 2εLb = 2εLb2 

εAVAgain we can cast this in terms of the voltage on the capacitor using Q = d 

V 2ε L 
f = ◦ (2)� 2d 

(c) Consider a ring with outer radius R, and width w, having N segments (N/2 segments are conducting 
plates, see diagram below). 

By these conditions, each segment has angular width 

Θwidth = 2N
π 

1 



If we place this ring above an identical ring, than the area of overlap of conducting plates will go from zero 
to (2wR − w2)π as Θ goes from zero to Θwidth. So we can express the overlap area as a function of Θ by 

A = (2wR − w2) N Θ = A Θ,4 ◦

where A is a constant (with respect to Θ). Using this expression, we can calculate capacitance as a function 
of Θ, 

◦ 

C = εA = εA ◦ Θ = C Θd s ◦ 

where d is the separation between the two rings. 

The stored energy in the overlap is 

Q2 Q2 

we = = 2C 2C Θ ◦ 

giving a torque 

T ∂we = −Q2 
∂ Θ−1 = Q22d= − ∂Θ 2C ∂Θ εN(2wR−w2)Θ2 ◦ 

If we take the case of one ring, with w = R and N = 4, then the above expression becomes equation 6.2.14 
from the notes. 

From the notes, we know that the power from the %50 duty cycle is P = Tω/2. We know that the angular 
velocity will be limited by the maximum speed of the outer edge, wmax = vmax/R. So the mechanical power 
obtained from one ring is 

(2wR − w2)Nε E2 dvmax
Power = ◦ bd (3)

16R 

To get the highest power, we want to put as many segments as possible into the total allowed volume. 
This will happen when we make w and d as small as possible and R as large as possible (d = 0.5 [mm], 
w = 4d = 2 [mm]). 

vol = 1 [L] = 0.001 [m3] = dπ(R2 − (R − w)2) = dπ(2Rw − w2) = π(R8d2 − 16d3) 
0.001R = 8πd2 + 4d = 159.16 [m] 

2πR If we limit the length of any one segment to 4d to reduce the fringing fields, we can fit N = 4d = 500015.8 
(but we need N to be an even whole number, so choose N = 500014) segments on the ring. So the total 
mechanical power becomes: 

Power = (2wR−w 2)Nε ◦ E
2 dvmax = (2×0.002×159.16−16×(0.002)2)×500014×(8.85×10−12)×(0.0005)×100 E2bd

16R 16×159.16 bd 

Power = 5.53 × 10−11 E2 
bd 

For Ebd = 106 [V/m] this becomes Power = 55.3 [W ] 

(d) To get the maximum power we want to have a high number of segments, but to reduce fringing fields 
there is a limit to how small we can make any individual segment. Since we were not told how to make the 
structure, we put all the volume into a single ring with a 159 m radius. This neglects any material used to 
drive and support the structure. See diagram below. 
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(e) Power = 55.3 [W ], and the ring has a radius of 159.16 [m]. 

Problem 3.2 

(a) From the Lorentz force law, we know that electrons moving with velocity v̄ will experience a force 
f ̄ = −e(E ¯ + v̄ × µ H̄ ). In the case of a conductor moving through a magnetic field, this force will cause ◦
electrons to move within the conductor until the electric forces due to the distribution of electrons balance 
the magnetic forces due to the conductors motion. 

Using the notation in the following diagram, we can pretend that Io is moving through the magnetic field 
H ¯ = −ŷ 10−4 

[A/m] with velocity v̄ = ẑ 7200[m/s].µ◦ 

If the electric and magnetic forces are balanced, than f is zero, so we can solve for the electric field in terms 
of the magnetic field. 

f ̄= −e(E ¯ + v̄ × µ H̄) = 0 ◦ 

E ¯ = −v̄ × µ H ¯ = −ˆ y µ Hz v ×−ˆ◦ ◦ 

E ¯ = −x̂µ vH ◦ 

Noting that the field is constant within the conductor, we know that the potential difference V across the 
conductor will be the product of the field and the length of the conductor, V = Ed (in this case, d is the 
width of Io). 

V = dµ vH = (3340 × 103)(7200)(10−4) = 2.4 × 106 [V ].◦ 

Knowing the direction of the induced electric field, −x̂, we can determine that the side of Io closest to Jupiter 
will accumulate a negative charge (if no other current path exists). 

(b) Electrons will flow from the side of Io closest Jupiter, along the magnetic field lines, through Jupiter’s 
ionosphere, and back to the Io. Through Io this results in a flow of electrons along −x̂ (see diagram), with 
a current 

I ̄= x̂ 2.4×106[V ] 
1Ω 
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The force exerted on Io by the magnetic field, due to the current, will be 

¯ ¯ ¯ 2.4×106[V ]f = I × Hµ◦ d = x̂ 1Ω ×−ŷ(10−4)(3340 × 103)


f ̄= −ẑ 801.6 × 106[N ]


This force speeds up Io’s movement around Jupiter.


(c) P = V 2 
= (2.4×106)2 

= 5.76 × 1012 [Watts]R 1 

Problem 3.3 

Ignoring Relativistic effects 

The maximum range of the device is twice the radius associated with cyclotron motion of the 106 eV kinetic 
energy electron in a 10−5 Tesla magnetic field. 

ElectronEnergy = 106 ∗ e = 2
1 mv2 [J ] 

v = 2∗106 e = ωe ∗ R, so R = 1 2∗106e 
me ωe me 

The cyclotron frequency is defined by 

ωe = eµ◦ H 
me 

Giving a maximum range of 

Range = 2R = 2 eµ
me 

H 
2×

m
10

e 

6 e = µ
2 
H 

2×10
e 
6me 

◦ ◦ 

2 2 × 106 × 9.1 × 10−31 
Range =

1.26 × 10−6 × 10−5 1.6 × 10−19 
= 5.38 × 108 [m] (4) 

Dealing with Relativistic effects 

If we have to deal with relativistic effects, the kinetic energy of the electron can be expressed as 

Ek = mec
2 √

1−
1

(v/c)2 
− 1 , giving an expression for the velocity of the electron 

v = c 1 − ( m
E
e

k 
c + 1)−2 = 2.8 × 108 [m/s]2 

The cyclotron radius associated with this particle will be 

R = 1 mev 
eµ H

√
1−(v/c)2 ◦ 

which we can evaluate to get a maximum range of 7 × 108 [m]. 

Problem 3.4 

(a) To calculate the inductance of the device, we first need to find the magnitude of the H field in the device. 
Using Ampere’s law we can relate the magnitude of the H field (inside the iron and in the gap) to the current 
through the N turns of the wire on the iron circle. This is equation 3.2.19 in the notes. Applying the relation 
µHµ = µ Hg (from the fact that perpendicular B field is continuous from the iron into the gap) to equation ◦
3.2.19 we can find the magnitude of the H field in the gap. 

Hg [D µµ 
◦ + d] = Ni 

Hg = Ni[D µµ 
◦ + d]−1 
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If we assume that the gap stores nearly all the energy in the device, we can reduce this expression to 

Ni Hg = d . 

Using this H field in equation 3.2.16 gives the inductance of the device as 

� � 

L = 
µ◦ N 

A H ¯ • dā
= 

µ◦ N
2A 

(5)
i d 

(b) To find the force pulling the gap closed apply the force energy equation to the energy stored in the 
device. In the capacitor case, the constant was total charge on one of the plates. In the case for the inductor 
we’ll look at constant Λ = Li (short circuit the coil while still allowing current to flow). The energy stored 
in an inductor is wm = 2

Λ
L 

2 
[J ] by equation 3.2.23 and 3.2.16. So, the force pulling the gap closed is 

f = ∂wm = ∂ Λ2 
= Λ

2 ∂ 
N
d 

2A = Λ
N

2

2A∂d ∂d 2L 2 ∂d µ 2µ◦ ◦ 

Which reduces to: 

µ N2Ai2 

f = ◦ (6)
2d2 

It is also possible to solve this problem using the pressure on the surface of the rod at the gap due to the 
magnetic field. 

µ H2 µ A(Ni)2 µ N2 Ai2 

f = PmA = ◦
2 A = ◦ 

2d2 A = ◦ 
2d2 

Which is the same result as above. 
Ni (c) When d = 0 there is no gap, so the H field inside the iron cylinder becomes H = Hµ = D giving an 

inductance of 
µN2A 

L = (7)
D 

(d) The B ¯ field emerges from the high permeability torus nearly at right angles, and therefore representative 
B ¯ field lines might include those illustrated here (plus others, not drawn). 

(e) From equation 3.2.13 we know that the voltage across the coil is the derivative of the flux linkage, Λ. 
The flux linkage is 

Λ = Li = µ◦ N
2A id 

We can express d as a function of time using 

d(t) = d(1 + τ
t ) 

giving ∂d
∂t 
(t) = τ

d 
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so the volatage across the coil will be 

V = 
∂Λ

= 
∂ 

i
µ◦ N

2A 
= 

−iµ◦ N
2A 

(8)
∂t ∂t d(t) dτ(1 + t/τ )2 

for 0 < t < τ . 

Note that this voltage jumps from 0 at t = 0− to some value at t = 0+ . 
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