MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.013 - Electromagnetics and Applications

Problem Set 9 (four problems)
Suggested Reading: Course notes: Sections 9.3.1-2; 9.4; 10.3.1-2, 10.3.5; and 11.4.1-11.4.2

Problem 9.1

(a) Boston's big dig created new traffic tunnels, some measuring approximately 7×12 meters at their conducting walls. Over what frequency range $[\mathrm{Hz}]$ will these waveguides propagate one and only one
 mode? What is the name of this mode?
(b) What are the cutoff frequencies $\mathrm{f}_{\mathrm{m}, \mathrm{n}}[\mathrm{Hz}]$ for the $\mathrm{TE}_{11}, \mathrm{TE}_{01}$, and TM_{11} modes for these tunnel waveguides?
(c) What is the waveguide wavelength λ_{g} for the TE_{10} mode in these tunnels at 15 MHz ?
(d) We can consider the waves at 15 MHz to be plane waves reflecting from the tunnel sidewalls at some incidence angle θ_{i}; what is the value of θ_{I} for the TE_{10} mode?
(e) Write a general expression for the magnetic field $\overline{\mathrm{H}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ for the TM_{11} mode in terms of the waveguide dimensions b, a.
(f) For the TM_{11} mode, where might long slots be cut in these waveguide walls without significantly perturbing wave propagation? Briefly explain your answer; hint--your answer to (e) might help here.
(g) A 1-MHz AM broadcast station signal is below the cutoff frequency for these tunnels and therefore has a $1 / \mathrm{e}$ power attenuation distance equal to δ. What is the numerical value of $\delta[\mathrm{m}]$, which is some fraction of the approximate AM signal penetration distance into the mouth of the tunnel?
(h) What sorts of problems might be experienced when trying to hear FM broadcasts in the $88-108 \mathrm{MHz}$ band inside such long tunnels, assuming the signals penetrate the opening? Discuss briefly.

Problem 9.2

A certain perfectly conducting cavity resonator measures $3 \times 4 \times 5 \mathrm{~cm}$, or $\mathrm{b} \times \mathrm{a} \times \mathrm{d}$, respectively, where our convention is $d \geq a \geq b$, and for any mode $T E_{m n}$, the mode numbers m, n, and p are associated with the dimensions a, b, and d , respectively.
(a) What is the lowest resonant frequency $\mathrm{f}_{\mathrm{mnn}}$ of this air-filled cavity $[\mathrm{Hz}]$?
(b) What mode is this?
(c) Rank order the resonant frequencies for the modes $\mathrm{TE}_{011}, \mathrm{TM}_{110}$, and TE_{101} from lowest to highest. Explain briefly your method.
(d) What is the electric field distribution $\underline{\bar{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ for the TE_{101} mode?
(e) What is the maximum instantaneous total stored electric energy $\mathrm{w}_{\mathrm{e} \text { max }}$ for this TE_{101} mode in terms of the maximum instantaneous electric field $\mathrm{E}_{\max }$?
(f) What is the corresponding average power dissipated $\mathrm{p}_{\mathrm{d}}[\mathrm{W}]$ by this TE_{101} mode if a dielectric the fills the entire cavity and is characterized by ε_{0}, μ_{0}, and conductivity σ ?
(g) What is the Q of this lossy TE_{101} resonance, and what is the associated cavity $1 / \mathrm{e}$ energy decay time, $\tau_{101}[\mathrm{sec}]$?
(h) How does τ_{101} compare to the charge and electric field relaxation time $\tau=\varepsilon / \sigma$?
(i) Roughly sketch the loci of those points on the cavity walls where to first order a tiny local indentation will not change the resonant frequency f_{101}. Indicate (e.g., crosshatch) roughly those portions of the cavity walls where indentation will slightly reduce the resonant frequency. Explain briefly.

Problem 9.3

As the owner of a new HDTV broadcasting station at 60 MHz , a decision must be made concerning transmitter power. Assume the data rate transmitted is $18 \mathrm{Mbps}\left(18 \times 10^{6}\right.$ bits per second), the transmitting antenna has equal gain of $\sim 10 \mathrm{~dB}$ toward anyone in its customer base, an extra transmitter power margin of 20 dB is desired to compensate for fading due to multipath, and that all customers are located within 60 km , have a TV antenna with $10-\mathrm{dB}$ gain that points toward the transmitter, and also have a TV receiver that needs at least 10^{-16} Joules per bit of information received.
(a) What transmitter power $\mathrm{P}_{\mathrm{T}}[\mathrm{W}]$ is needed?
(b) At this transmitter power what is the transmitted wave intensity I [W/m ${ }^{2}$] for customers 60 km away, assuming there is no fading?
(c) What is the effective area $\mathrm{A}_{\mathrm{e}}\left[\mathrm{m}^{2}\right]$ of the customer's antenna?

Problem 9.4

A certain automobile collision-avoidance radar transmits $60-\mathrm{GHz} \mathrm{CW}$ pulses forward with an antenna gain G of 10 dB in order to detect pedestrians and automobiles with scattering cross-sections σ_{s} greater than $10^{-2} \mathrm{~m}^{2}$. The receiver requires 10^{-12} Watts in order to detect such hazards at $50-\mathrm{m}$ range using the same antenna. What is the minimum feasible transmitter power P_{t} needed for this radar? If the antenna radiation resistance $\mathrm{R}_{\mathrm{r}}=100$ ohms, what voltage $|\underline{\mathrm{V}}|$ must the transmitter deliver to the matched lossless antenna?

MIT OpenCourseWare
http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

