MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.013 - Electromagnetics and Applications

Problem Set 8 (two problems)

Suggested Reading: \quad Course notes, Sections 7.4.1-7.4.4; 9.3.1. Material not on the next quiz, but that is covered this week and in P.S. 9 includes Sections 9.3.1-9.3.2; 9.4.

Quiz 2: Reminder -- Quiz 2, April 16th (Thursday) during lecture; it emphasizes material March 1 through April 8 and Problem Sets 5-8 (including this problem set, which can be delayed until Friday, just after the quiz). It is closed book with a single formula sheet provided in advance, to which formulas may be added.

Problem 8.1

A lossless TEM resonator of length D is short-circuited at one end and open-circuit at the other, as illustrated. It is filled with insulator having $\mu=\mu_{\mathrm{o}}$ and $\varepsilon=4 \varepsilon_{0}$.
(a) What are the resonant frequencies $f_{i}[\mathrm{~Hz}]$ of this TEM resonator?
(b) Please express the complex current distribution $\underline{I}(\mathrm{z})$ as a function of the complex magnitude \underline{I}_{0} of the current through the short circuit at resonant frequency f_{i}.
(c) What are the time-average magnetic and electric energies, w_{m} and w_{e}, stored in this resonator at frequency f_{i}, in terms of \underline{I}_{0} ?
(d) This resonator is then coupled to an external matched circuit through a TEM line, as illustrated. Assume $\mathrm{Z}_{0}=$ 100Ω. Approximately what value of δ_{i} yields $\mathrm{Q}_{\mathrm{L}}=20$ at frequency f_{i} ? (Please give the smallest value of δ_{i} that
 works.)
(e) Is this a series or parallel resonance? What is its half-power bandwidth $\Delta f[\mathrm{~Hz}]$?
(f) A very small resistor R_{i} is then placed in series with \underline{I}_{0}. What value of R_{i} would yield a critically matched resonator (one matched at resonance), assuming δ_{i} remained unchanged? What then is Q_{L} ?
(Please turn over for Problem 8.2)

Problem 8.2

All non-zero electromagnetic fields for a certain mode (TE_{m} or TM_{m}) of an air-filled parallel-plate waveguide are sketched below at a certain instant of time. Waves propagate only in the $\pm \mathrm{z}$ directions.
(a) Which field lines are electric and/or magnetic? What mode is this? Please briefly explain your reasoning.
(b) What are k_{x} and k_{z} for the illustrated mode?
(c) What is $\omega[\mathrm{r} / \mathrm{s}]$ for the illustrated wave?
(d) What is the cutoff frequency $\omega_{\text {c.o. }}$ for this
 mode?
(e) What is the phase velocity v_{p} for this mode at this frequency?
(f) What is the total time-average power flow [Watts] in the +z direction for the wave (waves) illustrated here? Assume the maximum value of $\overline{\mathrm{E}}(\mathrm{t})$ is 3 volts/meter, if needed. Briefly explain your reasoning.

MIT OpenCourseWare
http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

