6.013 - Electromagnetics and Applications

Problem Set 4 (six problems)

Suggested Reading: Course notes, Sections 5.5.1, 6.1, 6.3, 5.3.1; 5.6, 4.3.1, 4.3.2; 1.3, 4.5.1-4.5.4, 5.2, 4.4.1-4.4.2; 2.3.2-2.3.4

Problem 4.1 (See associated lab instructions)

A pill magnet of diameter D and area $\mathrm{A}=\pi \mathrm{D}^{2} / 4$ produces a nearly uniform magnetic field B_{o} across its broad face. We wish to estimate B_{0} using two different methods: induced voltage and force measurement.
(a) When the magnet is dropped down a tightly fitting but slippery nonconducting cylinder it induces a voltage $\mathrm{V}(\mathrm{t})$ across a compact coil of N turns wrapped around the cylinder, as illustrated. Based on this illustrated data, what is the approximate value of B_{0} ? Briefly explain your method and indicate which pole is North (top or bottom). Hint: Before drop, coil flux linkage $\Lambda=0$. Between $\mathrm{t}=0$ and $\mathrm{t}_{0}: \Delta \Lambda \cong \mathrm{NB}_{0} \mathrm{~A} . \mathrm{v}(\mathrm{t})=\mathrm{d} \Lambda / \mathrm{dt}$.

$\longrightarrow \begin{gathered}\text { Insulating } \\ \text { tube }\end{gathered}$

(b) What happens when this magnet is dropped down a copper cylinder? Why?
(c) To measure the attraction of the magnet to a thin high-permeability steel plate, the magnet is taped to a digital scale that is preloaded with a large weight. The steel plate is placed on top of the magnet and then pulled away manually using a spring so that the pulling force can be varied in a controlled manner while the "break-away" force $F_{0}[\mathrm{~N}]$ for the magnet is being determined. Given F_{0}, what is the approximate value of B_{0} ? Briefly explain your reasoning.

Problem 4.2

The illustrated horseshoe electromagnet has two thin gaps $\mathrm{g}=10^{-4} \mathrm{~m}$ separating its pole faces from a sliding high-permeability member, where B in the gaps is 2 Tesla and μ
 $\gg \mu_{0}$. The depth of the unit into the page is
3 cm , and the nominal overlap area A of the sliding and stationary members is $\sim 3 \mathrm{~cm}$ square $\left(9 \times 10^{-4} \mathrm{~m}^{2}\right)$ at time $\mathrm{t}=0$. This is a linear reluctance motor.
(a) What and where is the maximum magnetic energy density $\left[\mathrm{J} / \mathrm{m}^{3}\right]$ here at $\mathrm{t}=0$?
(b) What is the force $\mathrm{f}_{\mathrm{z}}[\mathrm{N}]$ acting to pull the magnet pole faces together in the z direction?
(c) What is the lateral force $f_{x}[\mathrm{~N}]$ pulling the sliding member into the gap (in the x direction)?
(d) What output voltage V_{o} is induced if the sliding member is withdrawn at velocity v $[\mathrm{m} / \mathrm{s}]$? Again assume $\mathrm{A}=3 \mathrm{~cm}$ square at the time of measurement.

Problem 4.3

A capacitor charged to $\mathrm{V}=1000$ volts is filled with two equally thick slabs of dielectric having permittivity ε and area A , where the conductivity of the first is $\sigma_{a}=10 \sigma_{b}$, as illustrated; the total dielectric thickness is 2d.
(a) What is the total capacitance C of this device?

(b) What is the voltage V_{m} at the midpoint junction between the two dielectrics?
(c) What are the free ρ_{fm} and net polarization ρ_{pm} surface charge densities $\left[\mathrm{C} / \mathrm{m}^{2}\right]$ at this midpoint junction? The net polarization surface charge ρ_{pm} is the difference between the polarization charges on the two dielectric surfaces at the junction.
(d) If we briefly short circuit this capacitor so that $\mathrm{V}=0$ and ρ_{fm} remains roughly constant, to what approximate peak value V_{p} does the open circuit voltage V quickly return, and with what approximate time constant τ does it then decay to zero? Does this suggest that inhomogeneous high-voltage capacitors that are short-circuited only briefly to discharge them could nevertheless be dangerous? Briefly explain your answer.

Problem 4.4

A certain transistor is controlled by its free charge density ρ_{f} within a zone of width W where $\varepsilon=4 \varepsilon_{0}$ and $\sigma=1[\mathrm{~S} / \mathrm{m}]$. If the voltages on the transistor electrodes bounding that zone abruptly change, forcing ρ_{f} to take values characterizing the next transistor state, with what time constant τ is the new ρ_{f} distribution established? Can τ be significantly less than W/c where c is the speed of light within the semiconductor? Discuss briefly.

Problem 4.5

What average pressure $\mathrm{p}\left[\mathrm{N} / \mathrm{m}^{2}\right]$ does a $1-\mathrm{kW} / \mathrm{m}^{2} 1-\mathrm{GHz}$ uniform plane wave apply to an absorbing black surface?

Problem 4.6

The separation-of-variables discussion in Section 4.5 .2 in the notes deals with twodimensional potentials $\Phi(\mathrm{x}, \mathrm{y})$ [volts]. Consider the three-dimensional case $\Phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and assume the boundary conditions yield $\mathrm{k}^{2}=0$.
(a) Derive the general form of $\Phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ that satisfies the Laplace equation in this case.
(b) If potential $\Phi=0$ everywhere along three intersecting edges of a cube (and therefore at four corners), and $\Phi=10$ volts at the opposite corner, what is the single value of Φ at the remaining three intermediate corners? Explain briefly.

MIT OpenCourseWare
http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

