MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.013 – Electromagnetics and Applications

	Problem Set 2	(five problems)
--	---------------	-----------------

Suggested Reading:	Course notes (Stael				
	Sections 2.1-2.3.4,	2.4,	2.7.1-2.7.3,	3.2.1-3.2.2,	Appdx. C.

Problem 2.1

Assume the "Whatever" vector $\overline{W}(x,y,z) = \hat{x} \sin y + \hat{y}y$.

- (a) If an electric displacement vector $\overline{D} = \overline{W}$, what is the charge density $\rho(x,y,z) [C/m^3]$?
- (b) If the magnetic field $\overline{H} = \overline{W}$, what is the current density $\overline{J}(x,y,z) [A/m^2]$, assuming \overline{H} is physically possible?
- (c) Does the magnetic field $\overline{B} = \overline{W}$ satisfy all of Maxwell's equations? If not, which one is violated?

Problem 2.2

If the electric field $E(t) = R_e \{ \underline{E} e^{j\omega t} \}$ where \underline{E} is a *phasor*, then what is E(t) if:

- (a) <u>E</u> = 1 j (b) <u>E</u> = $e^{j\pi/4}$ 1 (c) <u>E</u> = $j\hat{x} + (1 j)\hat{y}$
- (d) What is the complex vector $\underline{\overline{E}}$ if $\overline{E}(t) = \hat{x} \cos \omega t + \hat{y} \sin(\omega t + \pi/4)$?

[Hint: $E(t) = \cos \omega t$ for the case $\underline{E} = 1$]

Continued on next page

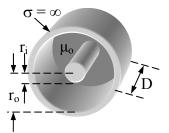
Problem 2.3

(a) What is the frequency f (Hz) of the wave having the magnetic field:

 $\overline{H} = \hat{x} \sin(10^7 \pi t - 0.2z) + \hat{y} \cos(10^7 \pi t - 0.2z - 2.5\pi)?$

- (b) What is its wavelength λ (meters)?
- (c) What is the velocity of light c in this medium?
- (d) Find the corresponding $\overline{E}(x,y,z,t)$ assuming $\mu = \mu_0$.
- (e) What is the polarization of this wave? (e.g., "left circular"; polarization is usually characterized by the behavior of the electric field vector)
- (f) What is the shortest non-zero time delay $\tau(sec)$ that could be added to the x component of the wave in order to achieve linear polarization? In this case, what is the direction θ of the linear polarization relative to the x axis? A sketch may help.
- (g) Polarization can also be characterized by complex notation. What is the polarization of the z-propagating wave $\underline{\overline{E}} = (j-1)\hat{x} + (1-j)\hat{y}$? (e.g., "left circular".)

Problem 2.4


A 1-GHz uniform plane wave propagating in the +z direction in a medium μ , ϵ is characterized by $\underline{\overline{E}} = \hat{x} 3$.

- (a) What is the time average intensity $[W/m^2]$ of this wave?
- (b) What is the magnetic energy density $W_m(t)$ [J/m³] at x = y = z = 0? What is the electric energy density $W_e(t)$ there?

Problem 2.5

Using the general expression for inductance L, find L for a coaxial inductor of length D and short circuited at one end, where the inner and outer radii of the two concentric conductors are r_i and r_o , respectively, as illustrated.

$$L = \frac{\Lambda}{i} = \frac{\mu N \iint_A \overline{H} \cdot d\overline{a}}{i}$$

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.