
Problem Set 10: Clustering
Handed out: Lecture 20.
Due: 11:59pm, Lecture 22.

Introduction
For this problem set, you will be using k-means clustering to process and analyze data.

You will have to produce only a small amount of code, but you should be sure to understand the
code that has been given to you.

Collaboration

You may work with other students. However, each student should write up and hand in his or her
assignment separately. Be sure to indicate with whom you have worked.

Getting Started
Download the files in the zip folder and save them in a single directory: ps10.zip

Submit all your answers to the written questions in a single file called ps10_writeup.pdf.

Background Overview
Every decade, the United States Census takes place. The census collects a lot of information
from the population around the United States. In this problem set, we are going to use k-means
clustering to analyze this information.

It is essential in this problem set to not try running everything at once. The data set is very large,
and some functions will take a long time to run. You should test out each element of the code
you are asked to write and/or understand. First, test your code on a sample data set and see if you
get the expected results. Once you are comfortable with the outcome, you should produce the
graphs for your writeup using the full data set. Running this code may take a while!

To help you, we’ve setup the starter code to load two global sets, “points”, which contains all the
data in counties.txt, and “testPoints”, which has only a tenth of the full data (this should be small
enough for most of your tests to run fairly quickly).

Problem 0: Provided classes and functions

In ps10.py, we’ve provided the following classes that you will use in this problem set:

• Point Class: represents the the data points
• County Class: represents the counties and contains a method that returns the distance

between two clusters. Also extends the Point class.
• Cluster Class: represents the clusters

In addition to the above, we’ve provided the following functions that you will use in this
problem set:

• kmeans(): produces a list of clusters and the maximum distance of any point in a cluster
to its centroid

• readCountyData(): takes a filename and number of features to import. Returns the
names, list of data points, and the maximum values

• buildCountyPoints(): uses readCountyData to create County instances given each
county from readCountyData

• randomPartition(): partitions a list into two lists

Finally, there is one sample function to get you started:

• test(): takes in a set of data points, uses kmeans to cluster them, and gives a histogram of
some average values.

Read ps10.py carefully before starting, so that you understand the provided code and its
capabilities.

Problem #1: Graphing Removed Error

In this question, you will need to graph the total error produced by the kmeans(…) function.

In order to do this, you must do the following:

1. Iterate over k in increments of 25 from 25 <= k <= 150 and for each k do the following:
1. Partition your data set into a training and holdout set, where the holdout set

should be 20% of all the points.
2. Using kmeans(...), find the total error of the training set, where the total error is

the following equation:∑ (distance of point to the centroid of its encapsulating
cluster)**2 where the sum is over all points in the training set. Hint: use the
Point.distance(...) method.

3. Given the holdout set, find the error by calculating the squared distance of each
point in the holdout set to its nearest cluster.

2. Once you have these error values:
1. Graph the error in the training set and the error in the holdout set against k (you

can graph these two lines on the same plot).
2. Also graph the ratio of the error of the holdout set over the total error of the

training set. It will make sense to do this in a separate plot.
3. (Hint: It will be much faster if you save all of the error values first and then do

your graphing afterwards rather than recomputing the clusters each time.)

def graphRemovedErr(points, kvals = [25,50,75,100,125,150], cutoff = 0.1):
 """
 Should produce graphs of the error in training and holdout
 point sets for ratio of the error of the points

 kvals: int list
 cutoff: float
 """
 # Your Code Here

Once you have things working, find the line that says

random.seed(123)

and comment it out. This line has been making the randomization consistant, which is nice for
debugging but doesn’t enable us to produce truly randomized results. Next, graph the full
dataset, and include in your writeup (ps10writeup.pdf) your graph, along with a short sentence
describing what the results mean. Note any trends or surprising features of the graph. (This need
not be a long response).

You will likely observe that the two sets (training and holdout) change error in the same
direction, but at different rates. Why do you think that is?

Problem #2: k-means and you

In this problem, you are going to look at the specific cluster that your home county ends up in (or
a county of your choosing if you are an international student.)

Run k-means three times with k = 50. For each run, note what cluster your county appears in,
and answer the following questions in ps10writeup.pdf:

1. Does your county cluster with the same counties each time? If not, why not?
2. Is your county in an appropriate cluster (i.e. a cluster with similar other counties)? Why

or why not?

Problem #3: Graphing Prediction Error

In this question, you are going to cluster a training set and examine the error if the clusters were
used to classify the holdout set.

For this question, you will need to modify County.weights, which is an array that affects how
important each feature is in the clustering process. Look at how it is defined and used in ps10.py
to make sure you understand how to modify it. The default is for all weights to be 1.0 — this is
so that every feature has an equal effect on the clustering. For this problem, all you need to know
is if you set a particular weight to 0, that feature will be ignored when clustering the points.
(Take a look at the input data file to see which dimension in the weights array corresponds to
which feature.)

For this problem, you must do the following:

1. Set the weight of the Poverty feature to 0 and the weight of all other features to 1 in the
weights array of the County class (we will examine the effect of changes to this weight
vector later.)

2. Partition your data set into a training set and a holdout set, where the holdout set is 20%
of all the data and is randomly chosen.

3. Using kmeans(...), cluster the training data into 25-150 clusters as in Problem 1.
4. For each point p in the holdout set, find the cluster c that is closest to p. Find the average

poverty of c. Graph the squared difference of p‘s poverty subtracted from c‘s average
poverty as k changes. Use the actual poverty value, not the normalized poverty value.

def graphPredictionErr(points, dimension, kvals = [25, 50, 75, 100, 125,
150], cutoff = 0.1):
 """
 Given input points and a dimension to predict, should cluster on
 the appropriate values of k and graph the error in the resulting
 predictions, as described in Problem 3.
 """
 # Your Code Here

Include the graph in ps10writeup.pdf, along with a short analysis (no more than 1 paragraph)
that explains why the error is high or low and why it varies depending on the value of k.

Problem #4: Graphing Prediction Error (AGAIN!)

Now you are going to examine what happens if we change the values of the weights in the
County class. In the previous problem, you set the Poverty feature to 0 to make sure it didn’t
interfere with your predictions (otherwise we would be “predicting” the poverty by choosing
values that we already knew were close to the correct answer, which is cheating). Now you will
leave the Poverty weight 0, but try changing some of the other weights to see if we can still get
better predictions.

1. Find a weights vector (while keeping the Poverty weight set to 0) that produces a graph
with significantly lower error than Problem 3. Use weights of either 0 or 1. Put this graph
in ps10writeup.pdf and be sure to include the weight vector you found. Also include a
sentence or two as to why your believe your weight vector produces this result.

2. Find a weights vector (while keeping the Poverty weight set to 0) that produces a graph
with lower error than the above part. This time you should use values between 0 and 1.
Put this graph in ps10writeup.pdf and be sure to include the weight vector you found.
Also provide a sentence or two as to why your believe your weight vector produces this
result.

Hand-In Procedure

1. Save

Save your code in two files, named ps10.py and ps10writeup.pdf.

2. Test

Run your file to make sure it has no syntax errors or typos! Make sure the code you
submit can generate all the graphs we’ve asked you to make

3. Time and Collaboration Info

At the start of your file, in a comment, write down the number of hours (roughly) you
spent on the problems, and the names of the people you collaborated with. For example:

Problem Set 10
Name: Jane Lee
Collaborators (Worked with): John Doe
Collaborators (Exact solution): Ben Bitdiddle
Time: 3:30

... your code goes here ...

MIT OpenCourseWare
http://ocw.mit.edu

6.00SC Introduction to Computer Science and Programming
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

