Lasers

Stimulated Emission
Lasers: Trapping Photons
Terahertz Lasers
Course Overview




P-N Junctions and LEDs
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High energy electrons (n-type) fall into low energy holes (p-type)



Energy Conservation
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Through and Across Variables
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Atomic Transitions
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Light Emission from Magnets

Maxwell’ s Equations couple H and E fields..

dt
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Image in the Public Domain approximation
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http://juluribk. com/2010/01/14/
[radiation-from-dipole/

Courtesy of Bala Krishna Juluri and Sophocles
Orfanidis. Used with permission.
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Light Emission from Magnets
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- Superposition state =
oscillating magnet
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Solar Cells and Photodetectors
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Classical: Oscillating electric field drives charge oscillation

Quantum: Electric field creates superposition of energy states
- which have an oscillating charge density



Reverse Absorption: Stimulated Emission

ABSORPTION STIMULATED EMISSION

How do you choose the color, direction, and phase
of the generated photon ?

GENERATED PHOTON IS
AN EXACT DUPLICATE OF THE INCOMING PHOTON
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Quantum Mechanics and Stimulated Emission

Pauli Exclusion and electrons (fermions) Stimulated emission and photons (bosons)

Two is a crowd !’ The More the Merrier !’

HELLD
my name Is

* * fermion

FERMIONS GO TO DIFFERENT STATES BOSONS PREFER TO BE IN THE SAME STATE
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Quantum Mechanics and Stimulated Emission
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Lasers

The astounding phenomenon is “Stimulated Emission”
- a purely guantum phenomenon !

Identical photons with the same
frequency moving in the same direction -

Result is a
coherent light source with a highly
directional beam !

Stimulated Emission: If one photon is present it is more likely that an atom
will emit a second identical photon! In a laser there is a cascade that causes
emission of many identical photons!

r
V(r)
n =2
AFE Two
n=1 identical
Photon emitted by photons!

some other atom
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Semiconductor Lasers
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All images are in the public domain
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Active Devices for DVD Players
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Laser
strained QW at 655 nm

All images are in the public domain



Quantum Well Lasers

p-type semiconductor
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Trapping Photons: Mirrors and Waveguides

How do we keep photons around for long enough time
so they have a chance to stimulate an emission ?
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Longest Wavelength Semiconductor Lasers

A —
INTERBAND LASER:

AFE¢ - = hw set by bandgap

| = Bipolar: electron-hole
¥ I e
Conduction Band recom_blnatlon ) ]
- E, = Opposite band dispersion
Valence Band

INTERSUBBAND LASER:

_I. — = Jfiw chosen by design
L L = Unipolar: electrons make
intraband transitions
J’_ fuw = Same subband dispersion

Conduction Band



Quantum-Cascade Lasers
(slide courtesy of Prof. Jerome Faist at Univ. Neuchatel)
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Cascade: N repetitions of a period
- 1 electron traveling through this structure may generate N photons

P
V Groupe de physique mésoscopique / !
) Institut de physique, IUM
= Université de Neuchatel \'

Courtesy of Jerome Faist. Used with permission.
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Metal Mirror Waveguides
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Courtesy of Qing Hu, Millimeter-wave and Terahertz Devices Group o

at MIT. Used with permission.

Reflecting
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http://www.rle.mit.edu/thz/

6.007 - Applied E&M - From Motors to Lasers

The course encompassed THREE THEMES with FIVE related LABS

WORK AND ENERGY QUANTUM MECHANICS
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6.007 - Applied E&M - From Motors to Lasers

The course encompassed THREE THEMES with FIVE related LABS

ENERGY CONVERSION and
STORAGE
- Energy Conservation
- Across and Through Vars.
- Energy Storage

ENERGY/POWER/WORK in
BASIC CIRCUIT ELEMENTS

EM WAVES
- Wave Equation
- Energy in the EM Waves
- Polarized Light

MATERIALS RESPONSE
- Lorentz Oscillator
- Reflection, Absorption
- Complex Refractive Index
- Evanescent Waves

- Electric/Magnt Materials
Energy Method for Motors
- Magnetostatic /
Electrostatic Machines
- Micro-Electro Machines

- Limits of Statics

DEVICES AND PHYSICS
- Polarizers/Birefringence

- Photon as a
Quantum of Energy

MEASUREMENT AND
UNCERTAINTY
- Photon Momentum
- Heisenberg Microscope

ELECTRON EIGENSTATES

- Calculating Wavefunctions

- Particle in a Box

- Atoms and Quantum Dots

QUANTUM ELECTRONICS
- Tunneling (STM, Flash)

- Energy Bands/ Conduction

- Energy Band Transitions

- Photodetectors, Solar Cell

- LED and Lasers
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