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Maxwell s Equations 

The Wave Equation 

Dispersion Relation 

Energy-Momentum 

(free-particle) 

Energy-Momentum 

Dispersion Relation 

(free-particle) 

The Schrodinger Equation 

Quantum Field Theory ∮
C
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(∫
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dt
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ψ

�ω =
�
2k2
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E =
p2

Maxwell and Schrödinger 

2m

… is thought to be the unique and 
correct outcome of combining the 

rules of quantum mechanics with the 
principles of the theory of relativity. 
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P-N Junctions and LEDs 

High energy electrons (n-type) fall into low energy holes (p-type) 

p-type n-type 

Resistor 
Not 

Shown 

Power Source 

LED 
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P-N Junctions and LEDs 

EN
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Large Gap 

Yellow  
Light 

Emitted 

Red  
Light 

Emitted 
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P-N Junctions and LEDs 

Uncertain energy during transition from high energy to low energy 

Ψ(x, t) = ψ1(x)e
−iE1t/� + ψ2(x)e

−iE2t/�
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Coupling of Electric and Magnetic Fields 

Maxwell’s Equations couple H and E fields.. 

Oscillating B generates H… Oscillating E generates H… 

How are the oscillating fields generated ? 

∮
C

�E · d�l = − d

dt

(∫
S

�B · d �A
) ∮

C

�H · d�l
=

∫
S

�J · d �A+
d

dt

∫
S

ε �E · d �A
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Time-Dependent Schrodinger Equation 

For that matter, how do we get ANYTHING to move ? 

states of definite 
energy 

Schrodinger says that definite energy states do not move, they are stationary ! 

Ψ(x, t) = e−iEt/�ψ(x)

i�
∂

∂t
Ψ = − �

2

2m

∂2Ψ

∂x2
+ V (x)Ψ Eψ = − �

2

2m

∂2ψ

∂x2
+ V (x)ψ

|Ψ(x, t)|2 = |ψ(x)|2
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•  It is possible that a particle can be in a superposition of “eigenstates” with 
different  energies.   

–  Such superpositions are also solutions of the time-dependent SEQ! 
–  What is E of this superposition? 

Let’s see how these superpositions evolve with time. 

•  Particle is described by a wavefunction involving a superposition of the two 
lowest infinite square well states (n=1 and 2) 

Example: Superposition of Energy States 

0 L x 

V=∞ V=∞ 

Ψ(x, t) = ψ1(x)e
−iω1t + ψ2(x)e

−iω2t

ω1 =
E1

�
ω2 =

E2

�

E1 =
�
2

8mL2
E2 = 4E1

ψ1(x) = A1 sin
(π

L
x
)

ψ2 = A1 sin

(
2π

L
x

)
ψ1

ψ2

ψ(x)
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The probability density is given by: |Ψ(x,t)|2 : 

The frequency of oscillation between these two extremes is 

Because the cos term oscillates between ±1, |Ψ(x,t)|2 oscillates between: 

particle localized on left side of well 

0 x L 

particle localized on right side of well 

0 x L 

Probability 

Example: Superposition of Energy States 

|Ψ(x, t)|2 = |ψ1(x)|2 + |ψ2(x)|2 + 2ψ1ψ2 cos((ω1 − ω2)t)

|Ψ(x, t1)|2 = |ψ1(x) + ψ2(x)|2 |Ψ(x, t2)|2 = |ψ1(x)− ψ2(x)|2

ω =
E2 − E1

�

|ψ(x, t1)|2 |ψ(x, t2)|2
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•  Consider the numerical example: 

 
An electron in the infinite square well potential 
is initially (at t=0) confined to the left side of 
the well, and is described by the following 
wavefunction:  

If the well width is L = 0.5 nm, determine the 
time to it takes for the particle to “move” to the 
right side of the well. 

0 x L 

V=∞ 

0 x L 

period T = 1/f = 2t0   
with f = (E2-E1)/h  

Numerical Example 

V=∞ 

V=∞ V=∞ 
Ψ(x, t = 0) = A

√
2

L

(
sin

(π

L
x
)
+ sin

(
2π

L
x

))

En =
h2

2meλ2
n

=
1.505eV · nm2

λ2
n

E1 =
1.505 eV · nm2

4L2
=

1.505 eV · nm2

4(0.5 nm)2
= 1.505 eV

λn = 2L/n

En = E1n
2

to =
T

2
=

h

2(E2 − E1)
=

h

2(3E1)
=

4.136× 10−15 eV · sec
2(3× 1.5 eV)

= 4.6× 10−16 sec

|ψ(x, t = 0)|2

|ψ(x, t0)|2

10



 Consider a particle in an infinite potential well, which at t= 0 is in the state: 
 
 
 
with ψ2(x) and ψ4(x) both normalized. 
 
 
 

 
 
 
 
 
  
 
 

ψ2(x) = A2 sin

(
2π

L
x

)
0 x L 

Example: Superposition of Energy States 

2. If we measure the energy of the particle: What is the expected (average) energy? 
 

 (a) E2   (b) E4   (c) 0.25 E2 + 0.75 E4  
(d) It depends on when we measure the energy 

1.  If we measure the energy of the particle: What is the measured energy? 
 

 (a) E2   (b) E4   (c) 0.25 E2 + 0.75 E4  
(d) It depends on when we measure the energy 

Ψ(x, t) = 0.5ψ2(x)e
−iω2t + 0.866ψ4(x)e

−iω4t

ψ4(x) = A4 sin

(
4π

L
x

)
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•  It’s a mathematical fact that any two eigenstates with different 
eigenvalues (of any measurable, including energy) are ORTHOGONAL 

»  Meaning: 

So when you normalize a superposition of normalized energy eigenstates,  
you just have to make the sum of the absolute squares of their coefficients 
come out 1.  

Normalizing Superposition States 

∫
ψ∗
1(x)ψ2(x)dx = 0

ψ1(x) = A1 sin
(π

L
x
)

ψ2(x) = A2 sin

(
2π

L
x

)
0 L x 

V=∞ V=∞ 
ψ1

ψ2

ψ(x)
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•  The important new result concerning superpositions of energy eigenstates is that 
these superpositions represent quantum particles that are moving.  Consider: 

•  But what happens if we try to measure E on a wavefunction which involves more 
than one energy?   
–  We can still only measure one of the allowed energies,  

i.e., one of the eigenstate energies (e.g., only E1 or E2 in Ψ(x,t) above)! 

If Ψ(x,t) is normalized, |A1|2 and |A2|2 give us the probabilities that  
energies E1 and E2, respectively, will be measured in an experiment! 

Energy of Superposition States 

•  When do we not know the energy of an electron ? 

Ψ(x, t) = A1ψ1(x)e
−iω1t +A2ψ2(x)e

−iω2t
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Beautiful Consistency 

•  At what frequency does the charge oscillation occur ? 

•  How much energy does the field take away ? 

•  What is the energy of the photon that is released ? 

Quantum mechanics gives us the oscillating dipole,  
Maxwell gives us the field ! 
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2p 

1s 

photon 

r 

Atomic Transitions 

Ψ = c1sφ1se
iE1st + c2pφ2pe

iE2pt

ΔE

V (r)
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Classical:  Oscillating electric field drives charge oscillation 
 
Quantum: Electric field creates superposition of energy states  

  – which have an oscillating charge density 

Solar Cells and Photodetectors 

2p 

1s 

photon 

r 

Emission 

V (r)

ΔE

P1

16



Semiconductor Homojunction Solar Cell

CONDUCTION
BAND

electron

hole

VALENCE
BAND

METAL
CONTACT

(junction of two differently doped pieces of the same semiconductors)

METAL
CONTACT

IT IS ENERGETICALLY 
FAVORABLE FOR 

ELECTRONS TO GO TO THE 
MATERIAL ON THE RIGHT

IT IS ENERGETICALLY 
FAVORABLE FOR HOLES TO 
STAY IN THE MATERIAL ON 

THE LEFT

A

V

Resistor

p-type Silicon n-type Silicon

Animated
Photogeneration
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