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P-N Junctions and LEDs

Uncertain energy during transition from high energy to low energy

\Ij(x’ t) — wl (x)e—iElt/h + ¢2 (x)e—iEgt/h



Coupling of Electric and Magnetic Fields

Maxwell’s Equations couple H and E fields..

Oscillating B generates H... Oscillating E generates H...
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How are the oscillating fields generated ?



Time-Dependent Schrodinger Equation

For that matter, how do we get ANYTHING to move ?

states of definite
energy

Schrodinger says that definite energy states do not move, they are stationary !

O (2, )| = [o(2)



Example: Superposition of Energy States

e It is possible that a particle can be in a superposition of “eigenstates” with
different energies.

- Such superpositions are also solutions of the time-dependent SEQ!
- What is E of this superposition?
Let’s see how these superpositions evolve with time.

e Particle is described by a wavefunction involving a superposition of the two
lowest infinite square well states (n=1 and 2)

Uz, t) = gu(@)e” M h(z)e ™20

E]_ E2 V—°° A A —00
w1 = —/— wWo — —— - =
1 " 2 " "
h2
F = Ey =4F >
1 8mL2 2 1 0 wz L x

Y1 (x) = Aq sin (zx) Yo = Aq sin (2%;1,)

8



Example: Superposition of Energy States
The probability density is given by: |¥(x,t)]? :

T (2, t)|° = |11(2)]° + [ho(@)|? + 200192 cos((wr1 — wa)t)

Because the cos term oscillates between =1, |¥(x,t)]? oscillates between:

U (z, t1)]* = [r (@) + ga(@)” [W(z,t2)]” = [ (2) — to(@)[

2 2
Probability 1 [¥/(%:1)] y [(x, t2))
0 L X 0 L x
particle localized on left side of well particle localized on right side of well
Ey — Ey

The frequency of oscillation between these two extremesis w =

h



Numerical Example

M2
e Consider the numerical example: 4 w(az‘,t _ O)‘
V:OO“ A V:OO
An electron in the infinite square well potential
Is initially (at t=0) confined to the left side of
the well, and is described by the following ~
wavefunction: >
0 L X
2 2 2
U(x,t =0) = A4/ —= | sin (zx) +sin ( g ¥ (@, o)
L L L v=oo | oo
If the well width is L = 0.5 nm, determine the
time t, it takes for the particle to “move” to the
right side of the well. >
A =2L/n 0 L X
oo h*  1.505¢V - nm? B )
T 2meA2 A2 En = Eqn period T = 1/f = 2t,
with f = (E,-E,)/h
~ 1.505eV-nm*  1.505eV-nm?* L505 oV
b AL2 ~ 4(0.5nm)2
T h 4.136 x 10715 eV -
=) ¢, = - — _ _ . OV %% _ 46 x 10716 sec
2 2(Ey—Fy1)  2(3Eq) 2(3 x 1.5 eV)
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Example: Superposition of Energy States

Consider a particle in an infinite potential well, which at t= 0 is in the state:
Uz, t) = 0.5 (x)e ™2t + 0.8664(x)e 1t |

with yg,(x) and y,(x) both normalized.

Yo (x) = Agsin (%x) 0 L
Py(x) = Agsin (%x)

1. If we measure the energy of the particle: What is the measured energy?

(a) E, (b) E, (c) 0.25E,+0.75 E,
(d) It depends on when we measure the energy

2./ If we measure the energy of the particle: What is the expected (average) energy?

(a) E, (b) E, (c) 0.25E,+0.75 E,
(d) It depends on when we measure the energy
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Normalizing Superposition States

e |t’s a mathematical fact that any two eigenstates with different
eigenvalues (of any measurable, including energy) are ORTHOGONAL

» Meaning:

[ i @ys(ads =0

So when you normalize a superposition of normalized energy eigenstates,
you just have to make the sum of the absolute squares of their coefficients
come out 1.
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Energy of Superposition States

e The important new result concerning superpositions of energy eigenstates is that
these superpositions represent quantum particles that are moving. Consider:

U, t) = Aviba(a)e 1 + Agipn(a)e "

e But what happens if we try to measure E on a wavefunction which involves more
than one energy?

- We can still only measure one of the allowed enerqies,
I.e., one of the eigenstate energies (e.g., only E; or E, in W(x,t) above)!

If W(x,t) is normalized, |A,]|? and |A,]? give us the probabilities that
energies E, and E,, respectively, will be measured in an experiment!

e When do we not know the energy of an electron ?
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Beautiful Consistency

» At what frequency does the charge oscillation occur ?

 How much energy does the field take away ?

« What is the energy of the photon that is released ?

Quantum mechanics gives us the oscillating dipole,
Maxwell gives us the field !
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Atomic Transitions

1 st 1Eopt
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Solar Cells and Photodetectors
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Classical: Oscillating electric field drives charge oscillation

Quantum: Electric field creates superposition of energy states
- which have an oscillating charge density
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(junction of two differently d?:ed pieces of the same semiconductors)
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