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TRUE / FALSE 

1.  Judging from the filled 
 bands, material A is an 
 insulator. 

2.  Shining light on a semiconductor should decrease 
its resistance. 

3.  The band gap is a certain location in a 
semiconductor that electrons are forbidden to 
enter. 

A B 
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1-D Lattice of Atoms 
Single orbital, single atom basis 

Adding atoms… 
•  reduces curvature of lowest energy state (incrementally) 

•  increases number of states (nodes) 
•  beyond ~10 atoms the bandwidth does not change with crystal size 

 
Decreasing distance between atoms (lattice constant) … 

•  increases bandwidth 
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From Molecules to Solids 

N-1 nodes 

0 nodes Closely spaced energy levels 
form a band  of energies 
between the max and min 

energies 

N atoms   N states 
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Electron Wavepacket in Periodic Potential 

Electron wavepacket 

Coulomb potential due to nuclei 

For smooth motion 
•  wavepacket width >> atomic spacing 
•  any change in lattice periodicity ‘scatters’ wavepacket 

 - vibrations 
 - impurities (dopants) 
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Equivalent Free Particle 

Electron wavepacket 

Coulomb potential due to nuclei 

Effective ‘free’ electron wavepacket 

Wavepacket moves as if it had an effective mass… 

Fext = m ∗ a

Electron responds to external force as if it had an effective mass 
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Name Symbol Germanium Silicon Gallium 
Arsenide 

Smallest energy bandgap at 300 K Eg (eV) 0.66 1.12 1.424 

Effective mass for  
    conductivity calculations 

Electrons *me ,cond/m0 0.12 0.26 0.067 

Holes *mh ,cond/m0 0.21 0.36 0.34 

Surprise: Effective Mass for Semiconductors 

Electrons wavepackets  
often have effective mass smaller than free electrons !  

Which material will make 
faster transistors ? 
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Approximate Wavefunction for 1-D Lattice 
Single orbital, single atom basis 

k = π/a 

k is a convenient way to enumerate the different energy levels  
 (count the nodes) 

Bloch Functions: ψn,k(r) = un,k(r)e
ikr un,k(r) ≈ orbitals

k = 0 

k ≠ 0 

a 
(crystal lattice spacing) e−ikna
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Energy Band for 1-D Lattice 
Single orbital, single atom basis 

lowest energy (fewest nodes) 

highest energy (most nodes) 

•  Number of states in band = number of atoms 
•  Number of electrons to fill band = number of atoms x 2 (spin) 
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From Molecules to Solids 

The total number of states = (number of atoms) x (number of orbitals in each atom) 

Bands of allowed  energies 
for electrons 

Bands Gap – range of energy where 
there are no allowed states  

r 

n = 1 1s energy 

n = 2 2s energy 

N states 

N states 
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+e r

n = 3

n = 2

n = 1

Atom Solid

• Each atomic state   a band of states in the crystal 

These are the “allowed” states for electrons in the crystal
 Fill according to Pauli Exclusion Principle

• There may be gaps between the bands 
These are “forbidden”energies where there

are no states for electrons

Bands from Multiple Orbitals

Example of Na

Z = 11    1s22s22p63s1

What do you expect to be a metal ?  
Na? Mg? Al? Si? P?

These two facts 
are the basis for 

our understanding 
of metals, 

semiconductors, 
and insulators !!! 

Image in the Public Domain
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Z = 14         1s22s22p63s23p2 

4N states 

4N states 

N states 1s 

2s, 2p 

3s, 3p 

2N electrons fill 
these states 

8N electrons fill 
these states 

Total # atoms = N   
Total # electrons = 14N 

Fill the Bloch states 
according to Pauli 

Principle 

It appears that, like Na, 
Si will also have a half 
filled band:  The 3s3p 
band has 4N orbital 

states and 4N electrons. 
But something special 
happens for Group IV 

elements. 

By this analysis, Si should be a 
good metal, just like Na. 

What about semiconductors like silicon? 
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Antibonding states  

Bonding states 

4N states 

4N states 

N states 1s 

2s, 2p 

3s, 3p 

2N electrons fill 
these states 

8N electrons fill 
these states 

The 3s-3p band 
splits into two: 

Z = 14         1s22s22p63s23p2 Total # atoms = N   
Total # electrons = 14N 

Fill the Bloch states 
according to Pauli 

Principle 

Silicon Bandgap 
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Controlling Conductivity: Doping Solids 

Boron atom (5) 

Silicon crystal  

hole 

ACCEPTOR DOPING: 
P-type Semiconductor 

Dopants: B, Al 

Silicon crystal  

Arsenic atom (33) 

Extra 
electron 

DONOR DOPING 
N-type Semiconductor 

Dopants: As, P, Sb 

IIIA IVA VA VIA 

Image in the  
Public Domain 

Conduction 
Band 

(Unfilled) 

Valence 
Band 

(partially filled) 

Conduction 
Band 

(partially filled) 

Valence 
Band 
(filled) 
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Metal Insulator 
or 

Semiconductor  
T=0 

Making Silicon Conduct 

Semi- n-Doped 
Conductor Semi- 

T≠0 Conductor 
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Today’s Culture Moment 
The bandgap in Si is 1.12 eV at room 

temperature.  What is “reddest” color 
(the longest wavelength) that you 
could use to excite an electron to the 
conduction band? 

 

Typical IR remote control IR detector 

Electron 
Conduction Band 

Hole 

Valence Band 

EC

EV

Energy 

Image is in the public domain 
Image is in the public domain 
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Semiconductor Resistor 

Given that you are applying a constant E-field (Voltage) why do you get a fixed 

velocity (Current) ?  In other words why is the Force proportional to Velocity ? 

n l 

A 

I 

V 

How does the resistance depend on geometry ? 
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A local, unexpected change in V(x) of electron as it approaches the impurity 

Scattering from thermal vibrations 

Microscopic Scattering 

Strained region  
by impurity exerts 
a scattering force τI

τT

18



Microscopic Transport 

vd 

Balance equation for forces on electrons: 

m
dv(r, t)

dt
= −m

v(r, t)

τ
− e [E(r, t) + v(r, t)×B(r, t)]

Drag Force Lorentz Force 

v 

t 
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Microscopic Variables for Electrical Transport 
Drude Theory 

Balance equation for forces on electrons: 

In steady-state when B=0: 
Note: Inside a semiconductor m = m* (effective mass of the electron) 

m
dv(r, t)

dt
= −m

v(r, t)

τ
− e [E(r, t) + v(r, t)×B(r, t)]

Drag Force Lorentz Force 

�v = − eτ

m∗
�EDC

�J = −ne�v =
ne2τ

m∗
�EDC

�J = σ �EDC σ =
ne2τ

m∗
and 
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Semiconductor Resistor 

Recovering macroscopic variables: 

OHM’s LAW 

�J = σ �EDC σ =
ne2τ

m∗
and 

I =

∫
�J · d �A = σ

∫
�E · d �A = σ

V

l
A

V = I
l

σA
= I

ρl

A
= IR

E

vdτ

Start 

Finish 

s
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Microscopic Variables for Electrical Transport 

For silicon crystal doped at n = 1017 cm-3 :   
σ = 11.2 (Ω cm)-1 , μ = 700 cm2/(Vs)and m* = 0.26 mo 

At electric fields of E = 106 V/m = 104 V/cm,  
 v = μE = 700 cm2/(Vs) * 104 V/cm = 7 x 106 cm/s = 7 x 104 m/s 

 scattering event every 7 nm ~ 25 atomic sites 

�J = σ �EDC σ =
ne2τ

m∗
and 

τ =
m∗σ
ne2

τ =
(0.26)(9.1× 10−31 kg)(11.200 m−1Ω−1)

1023 m−3(1.6× 10−19 C)2
= 10−13 s = 100 fs

E

vdτ

Start 

Finish 

s
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Electron Mobility 

Electron wavepacket 

Change in periodic potential 

Electron velocity for a 
fixed applied E-field 

�J = σ �E = ne�v
= neμ�E

�v = μ�E

Electron 
Conduction Band 

Hole 

Valence Band 

EC

EV

Energy 
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Electron Mobility 

•  Intrinsic Semiconductors  
(no dopants) 
–  Dominated by number of carriers, 

which increases exponentially with 
increasing temperature due to 
increased probability of electrons 
jumping across the band gap 

–  At high enough temperatures 
phonon scattering dominates  
velocity saturation 

•  Metals 
–  Dominated by mobility, which 

decreases with increasing 
temperature 

σe = n |e|μe = 1/ρ
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Key Takeaways 

Electron wavepacket 

Coulomb potential due to nuclei 

Wavepacket moves as if it had 
an effective mass… 

Fext = m ∗ a
�J = −ne�v =

ne2τ

m∗
�EDC
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