
6.006 Introduction to Algorithms Recitation 16 November 9, 2011

Rubik’s Cube
The Rubik’s Cube problem in Problem Set 6 maps all possible configurations of the Rubik’s cube
as vertices in a graph, and uses edges to represent valid twists of the cube. Given the node of the
starting state, you can use Breadth-First Seach (BFS) to find a sequence of edges (cube twists) that
will “solve” the cube, by getting into a desirable configuration.

Both configurations and moves are represented using permutations, so we start off by reviewing
permutations, and then we look at the graph structure.

Permutations Review
Informally, a permutation describes an ordering of a set’s elements. Formally, an N -element per-
mutation is a one-to-one mapping of the set 1, 2 . . . N to itself. A permutation f can be represented
by the list of N numbers f(1), f(2) . . . f(N). Here is an example of a 5-element permutation:

π = (34152)

Permutations are sometimes described using the explicit notation below. This notation is useful
for understanding the inner workings of permutations.

1 2 3 4 5
π =

3 5 1 2 4

The example above suggests that, in order

(
to apply π

)
to a 5-element list, we should first out-

put the third element, then the fourth element, then the first element, and so on. Given the list
[a, b, c, d, e], we can apply π to it (permute its elements by π) and obtain [c, d, a, e, b]. Figure 1
illustrates the process of applying a permutation.

a b c d e input

1 2 3 4 5

3 4 1 5 2 π

c d a e b output

1 2 3 4 5

c d a e b input

1 2 3 4 5

3 5 1 2 4 π

a b c d e output

1 2 3 4 5

Figure 1: The result of applying π to [a, b, c, d, e]. Applying π−1 to this result produces the original
list.

When
so π =

(programming, we usually prefer to use 0-based indexing for representing permutations,
1 2 3 4 5 [2, 3, 0, 4, 1]
3 4 1 5 2

)
would be represented as in Python.

1

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

The inverse of a permutation “undoes” the effects of applying the permutation to a list of
elements. For example, by applying π−1 (the inverse of π) to [c, d, a, e, b], we should obtain the
original list [a, b, c, d, e]. Remember that we obtained [c, d, a, e, b] by applying π to [a, b, c, d, e].

A permutation’s inverse can be computed by observing that π−1(π(i)) = i for 1 ≤ i ≤ N .
Intuitively, if π moves the third element in the input to the first position in the output, π−1 must
take the first element in that output (which becomes its input) and move it to the third position
in its own output, because π−1’s output must match π’s input. Figure 2 illustrates the process of
computing π−1.

1 2 3 4 5

3 4 1 5 2

1 2 3 4 5

3 5 1 2 4

Figure 2: Computing π−1. π(1) = 3, so π−1(3) = 1. π(2) = 5, so π−1(5) = 2. π(3) = 1, so
π−1(1) = 3. π(4) = 2, so π−1(2) = 4. π(5) = 4, so π−1(4) = 5.

The identity permutation IN is a “no-op”, and applying it to a list of elements yields the same
list. From the definition, it follows that IN(i) = i for 1 ≤ i ≤ N . For example, I5 = (12345).
Applying a permutation’s inverse to the permutation yields the identity permutation: π · π−1 = I5.

Cube State
A plastic 2x2 Rubik’s cube is made out of 8 plastic “cubelets”. Each plastic cubelet has 3 visible
faces that are colored, and 3 faces that are always face the center of the big cube, so we never
see them, and we ignore them from now on. Therefore, a plastic 2x2 Rubik’s cube has 24 (8x3)
colored plastic faces belonging to the 8 cubelets.

The code represents plastic faces using constants named as follows: yob is the yellow face
of the cubelet whose visible faces are yellow, orange, and blue. The code also numbers the 24
plastic faces from 0 to 23, and these numbers are the values of the constants named according to
the convention above.

One way of representing the Rubik’s cube configurations is to reflect the process of building
a physical cube by pasting the 24 colored plastic faces on a wireframe of a cube. The left side of
Figure 3 shows a wireframe 2x2 Rubik’s cube.

The cube’s wireframe has 8 cubeletes wireframes, each of which has 3 visible hollow faces
where we can paste a plastic face. We refer to the wireframe faces as follows: flu is the front
face of the front-left-upper cubelet in the wireframe. Wireframe faces are also associated numbers
from 0 to 23.

A cube configuration describes how plastic faces are pasted onto the wireframe cube, so it
maps the 24 plastic faces 0-23 to the 24 wireframe faces 0-23. This means that a configuration is a

2

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

front-left-upper
cubelet

front face of
front-left-upper

cubelet

yellow-orange-blue
cubelet

yellow face of
yellow-orange-blue

cubelet

Figure 3: The wireframe Rubik’s 2x2 cube is at the left, and the plastic cube is at the right. The
plastic cube is made out of plastic faces, and the wireframe cube has positions where the plastic
faces can be pasted.

permutation, which can be stored in a 24-element array.

. . . yob oby byo . . .

flu . . . fur urf rfu . . . rbd

Figure 4: A configuration of the Rubik’s cube is represented as a 24-element array, mapping the
24 plastic faces to the 24 wireframe faces. The configuration above has the yob plastic cubelet
mapped to the fru wireframe cubelet, like in Figure 3.

Implicit Graph Representation
Given the representation above, there are 24! possible configurations. Some configurations are out-
right impossible. For example, mapping two faces of the same plastic cubelet to faces of different
wireframe cubelets will clearly result in an impossible configurations, because we’re not allowed
to break apart the cube in order to solve it.

A graph with 24! configurations won’t fit into a normal machine’s RAM, so we can’t use the
straight-forward approach of generating the graph first, and then running Breadth-First Search
(BFS) on it. Instead, we will code up an implicit representation of the graph, which will allow us
to generate the vertices and edges that the BFS visits, on-the-fly, as we run BFS.

In order to run BFS, we need the vertices corresponding to our stating state and to the winning
state, and an implementation of NEIGHBORS(V), which returns all the neighbors of a given vertex
v.

3

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

Cube Twists
In order to implement NEIGHBORS(V), we need to analyze the configuration changes caused by
cube twists, and code them up inside the NEIGHBORS(V) method.

Twisting a cube changes the cube’s configuration, by changing the position of the plastic faces
onto the wireframe. A twist moves the cube’s wireframe so, for example, rotating the front face
clockwise will always move the plastic face that was pasted onto flu (the front face of the front-
left-upper cubelet) to rfu (the right face of the front-right-upper cubelet). Figure 5 illustrates the
effects of rotating the front face clockwise.

. . . flu luf ufl . . . πfront clockwise

flu luf ufl . . . fur urf rfu . . . rbd

flu luf ufl . . . fur urf rfu . . . rbd
yob oby byo

πfront clockwise

. . . yob oby byo . . .

flu luf ufl . . . fur urf rfu . . . rbd

Figure 5: The configuration changes and permutation representing a clockwise twist of the cube’s
front face.

Due to the property above, we can represent cube twists as permutations. Applying a twist’s
permutation to the list describing a configuration permutation produces the list describing the new
configuration permutation. So we can implement NEIGHBORS(V) by hard-coding the permutations
corresponding to cube twists, and applying them to the configuration corresponding to v.

The inverse of a twist’s permutation represents the move that would undo the twist.

4

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

StarCraft Zero
StarCraft is a very popular real-time-strategy (RTS) game produced by Blizzard. It has a dedicated
TV channel in South Korea, and passionate players have spent countless hours modeling its rules
and perfecting strategies for defeating their opponents. This problem analyzes a 6.006-exclusive
version of the game called StarCraft Zero, and asks you to compute the optimal “build order”
(opening strategy) for a StarCraft Zero player using the Zerg race.

Game Rules
Note: The model below has many rules, to showcase the power of solving games by understanding
the underlying configuration graphs. In the interest of time, your recitation instructor might have
chosen to use a simplified model during section.

In StarCraft Zero, Zergs have the units and buildings listed below. The costs associated with
each unit and building are shown in Figure 6.

1. a Drone (unit) can mine minerals at the rate of 8 minerals / second, or it can mutate into a
building, in 1 second

2. an Overlord (unit) allows you to exert control over 8 non-Overlord units; if you have O
Overlords, you cannot build more than a total of 8O non-Overlord units (Drones and Zer-
glings)

3. a Hatchery (building) can produce units at the rate of 1 unit / second; initially, a Hatchery
can only produce Drones and Overlords

4. a Zergling (unit) can attack enemy units

5. a Spawning Pool (building) allows all Hatcheries to produce Zerglings; once you build a
Spawning Pool, you may build Zerglings from any Hatchery

6. an Evolution Chamber (building) allows you to reseach an attack upgrade and a defense
upgrade that make all your Zerglings more powerful; once researched, each upgrade applies
to all your units

StarCraft Zero time flows in discrete 1-second quantas. At the beginning of a 1-second quan-
tum, players receive the minerals collected by drones, and issue build orders. At the end of the
quantum, the build orders complete. For example, assuming a player has $450 at the beginning of
second 0, she can build a Drone starting at second 0 (minerals drop to $400). The Drone would be
ready at the end of second 0, so it would generate $50 at the beginning of second 1 (minerals rise
to $450). The player can order it to mutate into a Hatchery at the beginning of second 1 (minerals
drop to $0),

Your control ability is limited, so you can control at most 200 units, even if you have more than
25 overlords. (25 = 200

8
)

At the beginning of a match, a StarCraft Zero player has 1 Hatchery, 1 Overlord, and 6 Drones.

5

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

Hatchery

Drone

Hatchery

$450
1 Drone

Spawning Pool

$200 1 Drone

Evolution Chamber

Attack
Upgrade

$1000

Defense
Upgrade

$1000

$250
1 Drone

$50

Overlord

$100

Zergling
$50

Spawning Pool built

Figure 6: StarCraft Zero tech tree for the Zerg race

Zergling power No attack upgrade Upgraded attack
No defense upgrade 1 1.33
Upgraded defenese 1.2 2

Table 1: The effect of upgrades on Zergling power in StarCraft Zero

Table 1 shows the effect of researching upgrades on a Zergling’s attack power. For exam-
ple, a player would start out with Zerglings with a power of 1, then research the attack upgrade,
which would give all Zerglings a power of 1.33, then research the defense upgrade, so that all the
Zerglings have an attack power of 2.

Build Order Problem
The end goal of any build order is to amass a large army of powerful Zerglings as fast as possible,
and use them to attack and destroy the enemy.

The main goal is to “reach the control cap” (build 200 units) as quickly as possible. Both
Zerglings and Drones count for the control cap, but only the Zerglings can attack, so we want at
most 50 Drones, which translates to at least 150 Zerglings, when we hit the cap. We want our army
to be as powerful as possible, so the goal includes researching both upgrades.

Our strategy also has a secondary goal of keeping the enemy “in check”. In order to do this, at
every minute 2M (time 2M ∗ 60 seconds), we have to harass the enemy by attacking them with a
group of Zerglings that have a total force of at least b6 log(1 +M)c. The Zerglings sent to harass
the enemy will all die. For example, if we have no upgrades at minute 2, we have to send in 6

6

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

Zerglings. If we had researched the defense upgrade (but not the attack upgrade) by minute 2, we
would have only had to send in 5 Zerglings.

Assume we have an infinite APM (actions-per-minute, a metric which counts how fast we can
issue commands in the game), so we can issue as many orders as we wish simultaneously. We’re
also willing to make the simplifying assumption that any time we build things, our minerals will
drop to 0. This means that our strategy will loop around the following steps:

• Assume we have 0 minerals.

• Wait for our Drones to collect enough minerals.

• Spend (almost) all the minerals building things.

Hint: it might help to assume at first that you can only do one action at a time, and you will
wait for the action will complete. This means your strategy will loop around the following steps:

• Assume we have 0 minerals.

• Wait for our Drones to collect enough minerals.

• Spend (almost) all the minerals building one unit or building, or researching one upgrade.

Solution: Graph Model
The problem can be solved by building a graph where all the game configurations are represented
as vertices, and the moves allowed in the game are represented as edges. Each edge connects
the vertex of the initial starting configuration to the vertex of the configuration that results from
performing the edge’s move on the initial configuration. Depending on the graph structure, finding
the best strategy can be achieved by a Breadth-First Search, or by a minimum-cost path algorithm
(Dijkstra for non-negative edges, Bellman-Ford for the general case).

The choice of how we represent a state has a major impact on the size of the graph, which in
turn impacts the running time of the solution.

Our solution represents each game state after the end of the 1-second quantum when a build
order is issued. A state is a tuple (h, d, z, o, S, E,A,D), which means we have h Hatcheries, d
Drones, z Zerglings, and o overlords. Additionally, we have a Spawning Pool if S is true, an
Evolution Chamber if E is true, we have researched the attack upgrade if A is true, and we have
researched the defense upgrade if D is true.

The initial state is h = 1, d = 6, z = 0, o = 1. An edge between two vertices u and v means
“accumulate just enough minerals, then issue orders to get from u to v”. An edge’s weight is the
time spent waiting for the minerals needed to issue the orders that will transition the game state
from u to v.

7

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

h = 1, d = 6, o = 1

h = 1,d = 7, o = 1
2 = d $50

6·$8e

build a Drone

h = 2, d = 5, o = 1
10 = d$450

6·$8 e

build a Hatchery

Figure 7: StarCraft Zero tech tree for the Zerg race

Solution: Modified Dijkstra
Edge weights are all non-negative, so we can run Dijkstra’s algorithm to find a minimum path
between the initial state and all possible states, and stop when we hit a desirable target state where
z ≥ 150 and S,E,A,D are all true.

Representing build actions as edges in the graph is reasonably straight-forward, but represent-
ing the harassment requirement is a bit tricky. Our solution takes advantage of the fact that we’re
operating on an implicit representation of the graph (initial vertex and NEIGHBORS(v) function),
and on the inner workings of Dijkstra’s algorithm.

At the time when Dijkstra visits a vertex v and calls NEIGHBORS(v), the minimum distance to
v is already known. In our case, this translates to knowing the time at which we enter the game
state corresponding to v. When generating edges and their destination vertices in NEIGHBORS(v),
we check each edge to see whether it crosses a 2-minute boundary – we can do that, because we
know the starting time, and we can compute the waiting time for the edge. If an edge does cross a
2-minute boundary, we do the following.

1. Compute the number of Zerglings required to satisfy the harassment requirement, and call
it zh. We can do that because we have encoded A and D in the state associated with each
vertex, so we know what upgrades we have.

2. If z < zh, we don’t have enough Zerglings to harass the enemy, so we’re going towards a
dead end. We remove the edge from NEIGHBORS(v)’s return value, since it is not actually a
valid move.

3. If z ≥ zh, we adjust the edge to reflect the harassment order, which will result in losing zh
Zerglings. To do this, we modify the edge’s destination – if it previously pointed to a state
where the player has z′ zerglings, we make it point to a state that is identical in every way
except the number of Zerglings is z′ − zh, instead of z′. This accounts for the Zerglings that
are lost while harassing the enemy.

Figure 8 shows an example of processing edges that cross a 2-minute mark in NEIGHBORS.

8

6.006 Introduction to Algorithms Recitation 16 November 9, 2011

a

h = 2, d = 15
o = 3, z = 5, S

h = 3, d = 15
o = 3, z = −1, S

4 = d $450
15·$8e

build a Hatchery

h = 2, d = 15
o = 3, z = 8, S

h = 3, d = 13
o = 3, z = 2, S

5 = d $450
13·$8e

build a Hatchery

Figure 8: Filtering edges processed by NEIGHBORS to account for the harassment requirement.
Both edges above cross the 2-minute mark, so the player needs to send a group of Zerglings to
harass the enemy. In both cases, the player has no upgrades, so she needs to send in 6 Zerglings.
The initial configuration for the top edge doesn’t have enough Zerglings, so the edge is removed
from the output of NEIGHBORS. The final configuration for the bottom edge is adjusted to reflect
the loss of 6 Zerglings during the harassment.

Further Optimizations
The running time can be optimized by eliminating vertices that would clearly lead to a sub-optimal
strategy. For example, it always makes sense to research the attack upgrade before the defense
upgrade, so we can ignore all the nodes where A is false but D is true. Also, it never makes sense
to build more than 25 Overlords, so we can eliminate all vertices where o > 25.

9

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

