
6.006 Introduction to Algorithms Recitation 13 October 28, 2011

Review on Graphs

Handshaking Lemma
In a party, people shook hands with each other. The sum of the number of times each person shook
hands must be even. This∑can be proven by proving the handshaking lemma: if G = (V,E) is an
undirected graph, then degree(v) = 2

v∈V
|E|.

Proof. The degree of a vertex in an undirected graph is the number of edges incident on it. For
example, in Figure 1, The degree of node 1 is 2 and the degree of node 2 is 3. Consider a
particular, but arbitrarily chosen edge ek = (vi, vj) ∈ E; it contributes a count of 1 each to deg(vi)
and deg(vj) and hence a count of 2 to the total degree. Hence, |E| edges contribute 2|E| to the total
degree. Each vertex represents a person and an edge (ui, uj) represents ui and uj shook hands. The
sum of hand-shakes is the sum of the vertex-degrees which is even.

Path
A path of length k from a vertex u to a vertex u′ in a graph G = (V,E) is a sequence 〈v0, v1, v2, . . . , vk〉
of vertices such that u = v0, u′ = vk, and (vi 1, vi) ∈ E for i = 1, 2, . . . , k. There is always a−
0-length path from u to u. If there is a path p from u to u′, we say that u′ is reachable from u via
p. If there is no path from u to u′, the distance from u to u′ is infinity.

Graph Representation
In addition to the representations shown during the lecture: adjacency lists, object-oriented vari-
ations and implicit representations, there is another way to represent a graph, called adjacency
matrix.

Adjacency Matrix
For a graph G = (V,E), we assume that the vertices are numbered 1, 2, . . . |V | in some arbitrary
order. Then the adjacency matrix representation of G consists of a |V |×|V |matrix A = (aij) such
that

aij =

{
1, if (i, j) ∈ E,
0, otherwise .

This matrix can be stored as an array of arrays, and it requires Θ(V 2) memory, independent of the
number of the edges in the graph. Figure 1 shows the adjacency matrix of an undirected graph.
Observe the symmetry along the main diagonal of the matrix. In some applications, it pays to store
only the entries on and above the diagonal of the adjacency matrix, thereby cutting the memory
needed to store the graph almost in half.

1

6.006 Introduction to Algorithms Recitation 13 October 28, 2011

1 2

3

45

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0

Figure 1: Adjacency matrix representation of an undirected graph.

Representation Tradeoffs
Space:

• Adjacency lists uses one node per edge, and two machine words per node. So space is
Θ(Ew) bits (w = word size).

• Adjacency matrix uses V 2 entries, but each entry can be just one bit. So space can be Θ(V 2)
bits.

Time:

• Add an edge: both data structures are O(1).

• Find if there is an edge from u to v: matrix is O(1), and adjacency list must be scanned.

• Visit all neighbors of v (very common): matrix is Θ(V), and adjacency list is O(neighbors).
This means BFS will take O(V 2) time if we use adjacency matrix representation.

• Remove an edge: similar to find and add.

The adjacency list representation provides a compact way to represent sparse graphs – those for
which |E| is much less than |V 2| – it is usually the method of choice. We may prefer an adjacency
matrix representation, however, when the graph is dense – |E| is close to |V 2| – or when we need
to be able to tell quickly if there is an edge connecting two given vertices.

Breadth First Search
Breadth first search (BFS) uses a queue to perform the search. A queue is a FIFO (first-in first-
out) data structure. When we visit a node and add all the neighbors into the queue, then pop the
next thing off of the queue, we will get the neighbors of the first node as the first elements in the
queue. This comes about naturally from the FIFO property of the queue and ends up being an
extremely useful property. Even thougth the implementation shown in the lecture does not use a
queue explicitly, it still maintains the FIFO order of visiting the nodes.

The following is the Python implementation of a queue-based BFS.

2

6.006 Introduction to Algorithms Recitation 13 October 28, 2011

1 from collections import deque
2
3 class BFSResult:
4 def __init__(self):
5 self.level = {}
6 self.parent = {}
7
8 class Graph:
9 def __init__(self):

10 self.adj = {}
11
12 def add_edge(self, u, v):
13 if self.adj[u] is None:
14 self.adj[u] = []
15 self.adj[u].append(v)
16
17 def bfs(g, s):
18 ’’’Queue-based implementation of BFS.
19
20 Args:
21 g: a graph with adjacency list adj such that g.adj[u] is a list of u’s
22 neighbors.
23 s: source.
24 ’’’
25 r = BFSResult()
26 r.parent = {s: None}
27 r.level = {s: 0}
28
29 queue = deque()
30 queue.append(s)
31
32 while queue:
33 u = queue.popleft()
34 for n in g.adj[u]:
35 if n not in level:
36 r.parent[n] = u
37 r.level[n] = r.level[u] + 1
38 queue.append(n)
39 return r

3

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

