
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 24, 2011
Professors Erik Demaine and Srini Devadas Problem Set 5

Problem Set 5
Both theory and programming questions are due Monday, October 31 at 11:59PM. Please

download the .zip archive for this problem set, and refer to the README.txt file for instructions
on preparing your solutions.

We will provide the solutions to the problem set 10 hours after the problem set is due. You will
have to read the solutions, and write a brief grading explanation to help your grader understand
your write-up. You will need to submit the grading explanation by Thursday, November 3rd,
11:59PM. Your grade will be based on both your solutions and the grading explanation.

Problem 5-1. [40 points] The Knight’s Shield

The optimized circuit verifier that you developed on your Amdtel internship was a huge success
and got you on a sure track to landing a sweet offer. You also got transferred to a research group
that is working on the Knight’s Shield (KS)1, a high-stakes project to develop a massive multi-core
chip aimed at the exploding secure cloud computing market.

The KS chip packs 16,384 cores in a die that’s the same size as a regular CPU die. However, each
core is very small, and can only do arithmetic operations using 8-bit or 16-bit unsigned integers
(see Table 1). Encryption algorithms typically use 2,048-bit integers, so the KS chip will ship with
software that supports arithmetic on large integers. Your job is to help the KS team assess the
efficiency of their software.

Operation R1 size R2 size Result size Result
ZERO 8 / 16 0 (zero)
ONE 8 / 16 1 (one)
LSB R1 16 8 R1 % 256 (least significant byte)
MSB R1 16 8 R1 / 256 (most significant byte)
WORD R1 8 16 R1 (expanded to 16-bits)
ADD R1, R2 8 / 16 8 / 16 16 R1 + R2
SUB R1, R2 8 / 16 8 / 16 16 R1 − R2 mod 65536
MUL R1, R2 8 8 16 R1 · R2
DIV R1, R2 16 8 8 R1 ÷ R2 mod 256
MOD R1, R2 16 8 8 R1 % R2
AND R1, R2 8 / 16 8 / 16 8 / 16 R1 & R2 (bitwise AND)
OR R1, R2 8 / 16 8 / 16 8 / 16 R1 ‖ R2 (bitwise OR)
XOR R1, R2 8 / 16 8 / 16 8 / 16 R1 ˆ R2 (bitwise XOR)

Table 1: Arithmetic operations supported by the KS chip. All sizes are in bits.

1The code name is Amdtel confidential information. Please refrain from leaking to TechCrunch.

1



Problem Set 5

The KS library supports arbitrarily large base-256 numbers. The base was chosen such that each
digit is a byte, and two digits make up a 16-bit number. Numbers are stored as a little-endian
sequence of bytes (the first byte of a number is the least significant digit, for example 65534
= 0xFFFE would be stored as [0xFE, 0xFF]). For the rest of the problem, assume all the input
numbers have N digits.

Consider the following algorithm for computing A + B, assuming both inputs have N digits.

ADD(A,B,N)

1 C = ZERO(N + 1) // ZERO(k) creates a k-digit number, with all digits set to 0s.
2 carry = 0
3 for i = 1 to N
4 digit = WORD(A[i]) + WORD(B[i]) + WORD(carry)
5 C [i ] = LSB(digit)
6 carry = MSB(digit)
7 C[N + 1] = carry
8 return C

(a) [1 point] What is the running time of ADD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(b) [1 point] What is the size of ADD’s output?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(c) [1 point] ADD’s output size suggests an easy lower bound for the subroutine. Does
the running time of ADD match this lower bound?

1. Yes

2



Problem Set 5

2. No

Consider the following brute-force algorithm for computing A · B, assuming both inputs have N
digits.

MULTIPLY(A,B,N)

1 C = ZERO(2N)
2 for i = 1 to N
3 carry = 0
4 for j = 1 to N
5 digit = A[i] ·B[j] + WORD(C[i + j − 1]) + WORD(carry)
6 C[i + j − 1] = LSB(digit)
7 carry = MSB(digit)
8 C [i + N ] = carry
9 return C

(d) [1 point] What is the running time of MULTIPLY?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(e) [1 point] What is the size of MULTIPLY’s output?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(f) [1 point] MULTIPLY’s output size suggests an easy lower bound for the subroutine.
Does the running time of MULTIPLY match this lower bound?

1. Yes
2. No

3



Problem Set 5

Consider the following brute-force algorithm for computing A ÷ B and A mod B, assuming
both inputs have N digits. The algorithm uses a procedure COPY(A,N) that creates a copy of an
N -digit number A, using Θ(N) time.

DIVMOD(A,B,N)

1 Q = ZERO(N) // quotient
2 R = COPY(A,N) // remainder
3 S0 = COPY(B,N) // Si = B · 2i

4 i = 0
5 repeat
6 i = i + 1
7 Si = ADD(Si-1 , Si-1 , N)
8 until Si [N + 1] > 0 or CMP(Si, A,N) == GREATER

9 for j = i− 1 downto 0
10 Q = ADD(Q,Q,N)
11 if CMP(R, Sj , N) != SMALLER

12 R = SUBTRACT(R, Sj , N)
13 Q[0] = Q[0]‖1 // Faster version of Q = Q + 1
14 return (Q,R)

(g) [1 point] CMP(A,B,N) returns GREATER if A > B, EQUAL if A = B, and
SMALLER if A < B, assuming both A and B are N -digit numbers. What is the
running time for an optimal CMP implementation?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(h) [1 point] SUBTRACT(A,B,N) computes A − B, assuming A and B are N -digit
numbers. What is the running time for an optimal SUBTRACT implementation?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

4



Problem Set 5

7. Θ(N log2 6)

8. Θ(N3)

(i) [1 point] What is the running time of DIVMOD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

The KS library does not use the DIVMOD implementation above. Instead, it uses Newton’s method
to implement DIV(A,B,N) which computes the division quotient A ÷ B, assuming both inputs
have N digits. DIV relies on the subroutines defined above. For example, it uses MULTIPLY

to perform large-number multiplication and ADD for large-number addition. MOD(A,B,N) is
implemented using the identity A mod B = A− (A÷B) ·B.

(j) [2 points] How many times does DIV call MULTIPLY?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(k) [2 points] What is the running time of MOD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

5



Problem Set 5

Consider the following brute-force algorithm for computing BE mod M , assuming all the input
numbers have N digits.

POWMOD(B,E,M,N)

1 R = ONE(N) // result
2 X = COPY(B,N) // multiplier
3 for i = 1 to N
4 mask = 1
5 for bit = 1 to 8
6 if E[i] & mask != 0
7 R = MOD(MULTIPLY(R,X,N),M, 2N)
8 X = MOD(MULTIPLY(X,X,N),M, 2N)
9 mask = LSB(mask · 2)

10 return R

(l) [2 points] What is the running time for POWMOD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Assume the KS library swaps out the brute-force MULTIPLY with an implementation of Karat-
suba’s algorithm.

(m) [1 point] What will the running time for MULTIPLY be after the optimization?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(n) [2 points] What will the running time for MOD be after the optimization?

1. Θ(1)

6



Problem Set 5

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(o) [2 points] What will the running time for POWMOD be after the optimization?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

(p) [20 points] Write pseudo-code for KTHROOT(A,K,N), which computes
√
b K Ac us-

ing binary search, assuming that A and K are both N -digit numbers. The running
time for KTHROOT(A,K,N) should be Θ(N2+log2 3).

7



Problem Set 5

Problem 5-2. [18 points] RSA Public-Key Encryption

The RSA (Rivest-Shamir-Adelman) public-key cryptosystem is a cornerstone of Internet security.
It provides the “S” (security) in the HTTPS sessions used for e-commerce and cloud services that
handle private information, such as e-mail. RSA secures SSH sessions (used to connect to Athena,
for example), and MIT certificates used to log into Stellar. You figure that the KS chip must
perform RSA efficiently, since RSA plays such an important role in cloud security. This problem
will acquaint you with the encryption and decryption algorithms in RSA.

RSA works as follows. Each user generates two large random primes p and q, and sets his public
modulus m = p · q. The user then chooses a small number2 e that is co-prime with (p− 1)(q− 1),
and computes d = e−1 mod (p − 1)(q − 1). The user announces his public key (e,m) to the
world, and keeps d private. In order to send an encrypted message to our user, another user would
encode the message as a number smaller than n, and encrypt it as c = E(n) = ne mod m. Our
user would decode the message using D(c) = cd mod m. Assume that keys can be generated
reasonably fast and that D(E(n)) = n, for all but a negligible fraction of values of n.

(a) [1 point] What is the running time of an implementation of D(n) that uses the KS li-
brary in Problem 1, with the optimized version of MULTIPLY (Karatsuba’s algorithm),
assuming that n, d and m are N -byte numbers?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

You’re thinking of using RSA to encrypt important sensitive images, such as last night’s picture of
you doing a Keg stand. Formally, a picture has R×C pixels (R rows, C columns), and each pixel
is represented as 3 bytes that are RGB color space coordinates3. The RSA key is (e,m), where m
is an N -byte number. An inefficient encryption method would process each row of pixel data as
follows:

1.Break the 3C bytes of pixel data into groups of N − 1 bytes

2.Pad the last group with 0 bytes up to N − 1 bytes

3.Encrypt each group of N − 1 bytes to obtain an N -byte output

4.Concatenate the N -byte outputs

265,537 is a popular choice nowadays
3see http://en.wikipedia.org/wiki/RGB_color_space

8

*

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.*

http://en.wikipedia.org/wiki/RGB_color_space


Problem Set 5

(b) [1 point] How many calls to the RSA encryption function E(n) are necessary to
encrypt an R× C-pixel image?

1. Θ(1)

2. Θ(RC)

3. Θ(RC )
N

4. Θ(RN )
C

5. Θ(CN )
R

(c) [1 point] What is the running time for decrypting an R× C-pixel image that was en-
crypted using the method above, using the KS library in Problem 1, with the optimized
version of MULTIPLY (Karatsuba’s algorithm)?

1. Θ(N)

2. Θ(N2)

3. Θ(N2 logN)

4. Θ(N log2 3)

5. Θ(N log2 6)

6. Θ(RCN)

7. Θ(RCN2)

8. Θ(RCN2 logN)

9. Θ(RCN log2 3)

10. Θ(RCN log2 6)

11. Θ(RN)

12. Θ(RN2)

13. Θ(RN2 logN)

14. Θ(RN log2 3)

15. Θ(RN log2 6)

(d) [5 points] A fixed point under RSA is a number n such that E(n) ≡ n mod m, so
RSA does not encrypt the number at all. Which of the following numbers are fixed
points under RSA? (True / False)

1. 0

2. 1

3. 2

4. 3

5. m− 2

6. m− 1

(e) [5 points] What other weaknesses does the RSA algorithm have? (True / False)

1. E(−n) ≡ −E(n) mod m

9



Problem Set 5

2. E(n1) + E(n2) ≡ E(n1 + n2) mod m

3. E(n1)− E(n2) ≡ E(n1 − n2) mod m

4. E(n1) · E(n2) ≡ E(n1 · n2) mod m

5. E(n1)
n2 ≡ E(nn2

1 ) mod m

(f) [5 points] Amdtel plans to use RSA encryption to secretly tell Gopple when its latest
smartphone CPU is ready to ship. Amdtel will send one message every day to Gopple,
using Gopple’s public key (eG, mG). The message will be NO (the number 20079
when using ASCII), until the day the CPU is ready, then the message will change
to YES (the number 5858675 when using ASCII). You pointed out to your manager
that this security scheme is broken, because an attacker could look at the encrypted
messages, and know that the CPU is ready when the daily encrypted message changes.
This is a problem of deterministic encryption. If E(20079) always takes the same
value, an attacker can distinguish E(20079) from E(5858675). How can the problem
of deterministic encryption be fixed? (True / False)

1. Append the same long number (the equivalent of a string such as ’XXXPADDINGXXX’)
to each message, so the messages are bigger.

2. Append a random number to each message. All random numbers will have the
same size, so the receiver can recognize and discard them.

3. Use a different encryption key to encrypt each message, and use Gopple’s public
exponent and modulus to encrypt the decryption key for each message.

4. Use an uncommon encoding, such as UTF-7, so that the attacker will not know
the contents of the original messages.

5. Share a “secret” key with Gopple, so that the attacker can’t use the knowledge on
Gopple’s public exponent and modulus.

10



Problem Set 5

Problem 5-3. [42 points] Image Decryption

Your manager wants to show off the power of the Knight’s Shield chip by decrypting a live video
stream directly using the RSA public-key crypto-system. RSA is quite resource-intensive, so most
systems only use it to encrypt the key of a faster algorithm. Decrypting live video would be an
impressive technical feat!

Unfortunately, the performance of the KS chip on RSA decryption doesn’t come even close to
what’s needed for streaming video. The hardware engineers said the chip definitely has enough
computing power, and blamed the problem on the RSA implementation. Your new manager has
heard about your algorithmic chops, and has high hopes that you’ll get the project back on track.
The software engineers suggested that you benchmark the software using images because, after
all, video is just a sequence of frames.

The code is in the rsa directory in the zip file for this problem set.

(a) [2 points] Run the code under the python profiler with the command below, and
identify the method inside bignum.py that is most suitable for optimization. Look
at the methods that take up the most CPU time, and choose the first method whose
running time isn’t proportional to the size of its output.
python -m cProfile -s time rsa.py < tests/1verdict 32.in

Warning: the command above can take 1-10 minutes to complete, and bring the CPU
usage to 100% on one of your cores. Plan accordingly. If you have installed PyPy
successfully, you should replace python with pypy in the command above for a
2-10x speed improvement.
What is the name of the method with the highest CPU usage?

(b) [1 point] How many times is the method called?

(c) [1 point] The troublesome method is implementing a familiar arithmetic operation.
What is the tightest asymptotic bound for the worst-case running time of the method
that contains the bottleneck? Express your answer in terms of N , the number of digits
in the input numbers.

1. Θ(N).
2. Θ(N log n)

3. Θ(N log2 n)

4. Θ(N log2 3)

5. Θ(N2)

6. Θ(N log2 7)

7. Θ(N3)

(d) [1 point] What is the tightest asymptotic bound for the worst-case running time of di-
vision? Express your answer in terms of N , the number of digits in the input numbers.

1. Θ(N).

11



Problem Set 5

2. Θ(N log n)

3. Θ(N log2 n)

4. Θ(N log2 3)

5. Θ(N2)

6. Θ(N log2 7)

7. Θ(N3)

e have implemented a visualizer for your image decryption output, to help you debug your code.
he visualizer will also come in handy for answering the question below. To use the visualizer,
rst produce a trace.

RACE=jsonp python rsa.py < tests/1verdict 32.in > trace.jsonp

n Windows, use the following command instead.

sa jsonp.bat < tests/1verdict 32.in > trace.jsonp

hen use Google Chrome to open visualizer/bin/visualizer.html

(e) [6 points] The test cases that we supply highlight the problems of RSA that we dis-
cussed above. Which of the following is true? (True / False)

1. Test 1verdict 32 shows that RSA has fixed points.
2. Test 1verdict 32 shows that RSA is deterministic.
3. Test 2logo 32 shows that RSA has fixed points.
4. Test 2logo 32 shows that RSA is deterministic.
5. Test 5future 1024 shows that RSA has fixed points.
6. Test 5future 1024 shows that RSA is deterministic.

(f) [1 point] Read the code in rsa.py. Given a decrypted image of R × C pixels
(R rows, C columns), where all the pixels are white (all the image data bytes are
255), how many times will powmod be called during the decryption operation in
decrypt image?

1. Θ(1)

2. Θ(RC)

3. Θ(RC )
N

4. Θ(RN )
C

5. Θ(CN )
R

(g) [30 points] The multiplication and division operations in big num.py are im-
plemented using asymptotically efficient algorithms that we have discussed in class.
However, the sizes of the numbers involved in RSA for typical key sizes aren’t suit-
able for complex algorithms with high constant factors. Add new methods to BigNum
implementing multiplication and division using straight-forward algorithms with low
constant factors, and modify the main multiplication and division methods to use the

W
T
fi

T

O

r

T

12



Problem Set 5

simple algorithms if at least one of the inputs has 64 digits (bytes) or less. Please note
that you are not allowed to import any additional Python libraries and our test will
check this.

The KS software testing team has put together a few tests to help you check your code’s cor-
rectness and speed. big num test.py contains unit tests with small inputs for all BigNum
public methods. rsa test.py runs the image decryption code on the test cases in the tests/
directory.

You can use the following command to run all the image decryption tests.

python rsa test.py

To work on a single test case, run the simulator on the test case with the following command.

python rsa.py < tests/1verdict 32.in > out

Then compare your output with the correct output for the test case.

diff out tests/1verdict 32.gold

For Windows, use fc to compare files.

fc out tests/1verdict 32.gold

While debugging your code, you should open a new Terminal window (Command Prompt in
Windows), and set the KS DEBUG environment variable (export KS DEBUG=true; on Win-
dows, use set KS DEBUG=true) to use a slower version of our code that has more consistency
checks.

When your code passes all tests, and runs reasonably fast (the tests should complete in less than
90 seconds on any reasonably recent computer using PyPy, or less than 600 seconds when using
CPython), upload your modified big num.py to the course submission site. Our automated
grading code will use our versions of test rsa.py, rsa.py and ks primitives.py /
ks primitives unchecked.py, so please do not modify these files.

13



 
 

 
 
 

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



