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Problem Set 3
Both theory and programming questions are due Thursday, October 6 at 11:59PM. Please

download the .zip archive for this problem set, and refer to the README.txt file for instructions
on preparing your solutions.

We will provide the solutions to the problem set 10 hours after the problem set is due, which
you will use to find any errors in the proof that you submitted. You will need to submit a critique of
your solutions by Friday, October 7th, 11:59PM. Your grade will be based on both your solutions
and your critique of the solutions.

Problem 3-1. [45 points] Range Queries

Microware is preparing to launch a new database product, NoSQL Server, aimed at the real-time
analytics market. Web application analytics record information (e.g., the times when users visit
the site, or how much does it take the server to produce a HTTP response), and can display the
information using a Pretty GraphTM1, so that CTOs can claim that they’re using data to back their
decisions.

NoSQL Server databases will support a special kind of index, called a range index, to speed up the
operations needed to build a Pretty GraphTM out of data. Microware has interviewed you during
the fall Career Fair, and immediately hired you as a consultant and asked you to help the NoSQL
Server team design the range index.

The range index must support fast (sub-linear) insertions, to keep up with Web application traffic.
The first step in the Pretty GraphTM algorithm is finding the minimum and maximum values to be
plotted, to set up the graph’s horizontal axis. So the range index must also be able to compute the
minimum and maximum over all keys quickly (in sub-linear time).

(a) [1 point] Given the constraints above, what data structure covered in 6.006 lectures
should be used for the range index? Microware engineers need to implement range
indexes, so choose the simplest data struture that meets the requirements.

1. Min-Heap
2. Max-Heap
3. Binary Search Tree (BST)
4. AVL Trees
5. B-Trees

Solution: AVL trees are the only data structure that supports sub-linear insertions, as
well as sub-linear minimum and maximum queries.

1U.S. patent pending, no. 9,999,999
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(b) [1 point] How much time will it take to insert a key in the range index?

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

Solution: Inserting a node in an AVL tree takes O(logN) time. See the lecture notes
on AVL trees.

(c) [1 point] How much time will it take to find the minimum key in the range index?

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

Solution: Finding the minimum key in an AVL tree takes O(logN) time. See the
lecture notes on AVL trees.

(d) [1 point] How much time will it take to find the maximum key in the range index?

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

Solution: Finding the maximum key in an AVL tree takes O(logN) time. See the
lecture notes on AVL trees.

The main work of the Pretty GraphTM algorithm is drawing the bars in the graph. A bar shows how
many data points there are between two values. For example, in order to produce the visitor graph
that is the hallmark of Google Analytics, the range index would record each time that someone uses
the site, and a bar would count the visiting times between the beginning and the ending of a day.
Therefore, the range index needs to support a fast (sub-linear time) COUNT(l, h) query that returns
the number of keys in the index that are between l and h (formally, keys k such that l ≤ k ≤ h).

Your instinct (or 6.006 TA) tells you that COUNT(l, h) can be easily implemented on top of a
simpler query, RANK(x), which returns the number of keys in the index that are smaller or equal
to x (informally, if the keys were listed in ascending order, x’s rank would indicate its position in
the sorted array).

(e) [1 point] Assuming l < h, and both l and h exist in the index, COUNT(l, h) is
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1. RANK(l)− RANK(h)− 1

2. RANK(l)− RANK(h)

3. RANK(l)− RANK(h) + 1

4. RANK(h)− RANK(l)− 1

5. RANK(h)− RANK(l)

6. RANK(h)− RANK(l) + 1

7. RANK(h) + RANK(l)− 1

8. RANK(h) + RANK(l)

9. RANK(h) + RANK(l) + 1

Solution: RANK(h) − RANK(l) + 1. We want to count all the keys x such that
l ≤ x ≤ h, which is equivalent to all the keys x ≤ h minus all the keys x < l.
RANK(h) counts all keys x s.t. x ≤ h. RANK(l) counts all keys s.t. x ≤ l, and will
include l. So we want RANK(h)− (RANK(l)− 1) = RANK(h)− RANK(l) + 1

(f) [1 point] Assuming l < h, and h exists in the index, but l does not exist in the index,
COUNT(l, h) is

1. RANK(l)− RANK(h)− 1

2. RANK(l)− RANK(h)

3. RANK(l)− RANK(h) + 1

4. RANK(h)− RANK(l)− 1

5. RANK(h)− RANK(l)

6. RANK(h)− RANK(l) + 1

7. RANK(h) + RANK(l)− 1

8. RANK(h) + RANK(l)

9. RANK(h) + RANK(l) + 1

Solution: RANK(h)−RANK(l). We want to count all the keys x such that l ≤ x ≤ h,
which is equivalent to all the keys x ≤ h minus all the keys x < l. RANK(h) counts
all keys x s.t. x ≤ h. RANK(l) counts all keys s.t. x ≤ l, which is equivalent to all the
keys x < l since l is not in the index. So RANK(h)− RANK(l) is the right answer.

(g) [1 point] Assuming l < h, and l exists in the index, but h does not exist in the index,
COUNT(l, h) is

1. RANK(l)− RANK(h)− 1

2. RANK(l)− RANK(h)

3. RANK(l)− RANK(h) + 1

4. RANK(h)− RANK(l)− 1

5. RANK(h)− RANK(l)

6. RANK(h)− RANK(l) + 1
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7. RANK(h) + RANK(l)− 1

8. RANK(h) + RANK(l)

9. RANK(h) + RANK(l) + 1

Solution: RANK(h) − RANK(l) + 1. We want to count all the keys x such that
l ≤ x ≤ h, which is equivalent to all the keys x ≤ h minus all the keys x < l.
RANK(h) counts all keys x s.t. x ≤ h. RANK(l) counts all keys s.t. x ≤ l, and will
include l. So we want RANK(h)− (RANK(l)− 1) = RANK(h)− RANK(l) + 1

(h) [1 point] Assuming l < h, and neither l nor h exist in the index, COUNT(l, h) is

1. RANK(l)− RANK(h)− 1

2. RANK(l)− RANK(h)

3. RANK(l)− RANK(h) + 1

4. RANK(h)− RANK(l)− 1

5. RANK(h)− RANK(l)

6. RANK(h)− RANK(l) + 1

7. RANK(h) + RANK(l)− 1

8. RANK(h) + RANK(l)

9. RANK(h) + RANK(l) + 1

Solution: RANK(h)−RANK(l). We want to count all the keys x such that l ≤ x ≤ h,
which is equivalent to all the keys x ≤ h minus all the keys x < l. RANK(h) counts
all keys x s.t. x ≤ h. RANK(l) counts all keys s.t. x ≤ l, which is equivalent to all the
keys x < l since l is not in the index. So RANK(h)− RANK(l) is the right answer.

Now that you know how to reduce a COUNT() query to a constant number of RANK() queries, you
want to figure out how to implement RANK() in sub-linear time. None of the tree data structures
that you studied in 6.006 supports optimized RANK() out of the box, but you just remembered that
tree data structures can respond to some queries faster if the nodes are cleverly augmented with
some information.

(i) [1 point] In order to respond to RANK() queries in sub-linear time, each node node
in the tree will be augmented with an extra field, node .γ. Keep in mind that for a
good augmentation, the extra information for a node should be computed in O(1)
time, based on other properties of the node, and on the extra information stored in the
node’s subtree. The meaning of node .γ is

1. the minimum key in the subtree rooted at node
2. the maximum key in the subtree rooted at node
3. the height of the subtree rooted at node
4. the number of nodes in the subtree rooted at node
5. the rank of node
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6. the sum of keys in the subtree roted at node

Solution: The number of nodes in the subtree rooted at node (also known as subtree
size).
γ cannot be the node’s rank, because that cannot be computed solely based on infor-
mation in the node’s subtree. Augmentations that report key information (minimum,
maximum, sum) don’t reveal any information about a node’s rank. A tree’s height is
only roughly related to the number of nodes in the tree.

(j) [1 point] How many extra bits of storage per node does the augmentation above
require?

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

6. O(N)

Solution: The number of nodes in a subtree is at most N , so the γ field in each node
needs to be O(logN)-bits wide to be able to store numbers between 0 and N .

The following questions refer to the tree below.

N1

N2

N3

N4 N5

N6

N7

N8

N9 N10

(k) [1 point] N4 .γ is

1. 0
2. 1
3. 2
4. the key at N4

Solution: 1. A leaf’s subtree has exactly one node.
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(l) [1 point] N3 .γ is

1. 1
2. 2
3. 3
4. the key at N4

5. the key at N5

6. the sum of keys at N3 . . . N5

Solution: 3

(m) [1 point] N2 .γ is

1. 2
2. 3
3. 4
4. 6
5. the key at N4

6. the key at N7

7. the sum of keys at N3 . . . N5

Solution: 6

(n) [1 point] N1 .γ is

1. 3
2. 6
3. 7
4. 10
5. the key at N4

6. the key at N10

7. the sum of keys at N1 . . . N10

Solution: 10. The questions should show the pattern for computing node .γ, which
is

node .γ = 1 + γ(left) + γ(right)

NIL .γ = 0

(o) [6 points] Which of the following functions need to be modified to update γ? If a
function does not apply to the tree for the range index, it doesn’t need to be modified.
(True / False)

1. INSERT
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2. DELETE

3. ROTATE-LEFT

4. ROTATE-RIGHT

5. REBALANCE

6. HEAPIFY

Solution: ROTATE-LEFT, ROTATE-RIGHT, and REBALANCE

γ needs to be updated in the same situations where a node’s height is updated. The
AVL methods that call UPDATE-HEIGHT are ROTATE-LEFT, ROTATE-RIGHT, and RE-
BALANCE. INSERT and DELETE rely on the rotation methods to update the height.

(p) [1 point] What is the running time of a COUNT() implementation based on RANK()?

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

Solution: O(logN), which can be achieved by the algorithm below.

RANK(tree, k)

1 r = 0
2 node = tree .root
3 while node = NIL

4 if k < node .key
5 node = node . left
6 else
7 if node . left = NIL

8 r = r + 1 + node . left .γ
9 else

10 r = r + 1
11 if node .key == k
12 return r
13 node = node .right
14 return r

The structure is very similar to that of FIND – in the worst case, RANK visits all the
nodes on a path from the root to a leaf, and does a constant amount of computation at
each node on the path.

After the analytics data is plotted using Pretty GraphTM, the CEO can hover the mouse cursor over
one of the bars, and the graph will show a tooltip with the information represented by that bar. To

6

6
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support this operation, the range index needs to support a LIST(l, h) operation that returns all the
keys between l and h as quickly as possible.

LIST(l, h) cannot be sub-linear in the worst case, because LIST(−∞,+∞) must return all the keys
in the index, which takes Ω(n) time. However, if LIST only has to return a few elements, we would
like it to run in sub-linear time. We formalize this by stating that LIST’s running time should be
T (N) + Θ(L), where L is the length of the list of keys output by LIST, and T (N) is sub-linear.

Inspiration (or your 6.006 TA) strikes again, and you find yourself with the following pseudocode
for LIST.

LIST(tree, l , h)

1 lca = LCA(tree, l , h)
2 result = []
3 NODE-LIST(lca, l , h, result)
4 return result

NODE-LIST(node, l , h, result)

1 if node == NIL

2 return
3 if l ≤ node .key and node .key ≤ h
4 ADD-KEY(result , node .key)
5 if node .key ≥ l
6 NODE-LIST(node . left , l , h, result)
7 if node .key ≤ h
8 NODE-LIST(node .right , l , h, result)

LCA(tree, l , h)

1 node = tree .root
2 until node == NIL or (l ≤ node .key and h ≥ node .key)
3 if l < node .key
4 node = node . left
5 else
6 node = node .right
7 return node

(q) [1 point] LCA most likely means

1. last common ancestor
2. lowest common ancestor
3. low cost airline
4. life cycle assessment
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5. logic cell array

Solution: Visiting the Wikipedia page for LCA shows that “lowest common ances-
tor” is the only computer science-related interpretation of LCA.

(r) [1 point] The running time of LCA(l, h) for the trees used by the range index is

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

Solution: O(logN), the height of the tree.

(s) [1 point] Assuming that ADD-KEY runs in O(1) time, and that LIST returns a list of
L keys, the running time of the NODE-LIST call at line 3 of LIST is

1. O(1)

2. O(log(logN))

3. O(logN)

4. O(log2N)

5. O(
√
N)

6. O(1) +O(L)

7. O(log(logN)) +O(L)

8. O(logN) +O(L)

9. O(log2N) +O(L)

10. O(
√
N) +O(L)

Solution: O(logN) +O(L).
The NODE-LIST call at line 3 performs a pre-order traversal starting at the least com-
mon ancestor of the nodes containing keys l and h. If the keys l and/or h are not in
the BST, we use the positions of imaginary nodes that would be created by inserting l
and/or h using the BST insertion algorithm (no re-balancing).
The traversal ignores some sub-trees. Line 5 prunes the left sub-tree of any node
whose key is ≤ l because, by the BST invariant, the keys of all the nodes in the sub-
tree will be smaller than node .key , which is ≤ l. In a symmetric fashion, line prunes
sub-trees where all the nodes’ keys are guaranteed to be greater than h.
NODE-LIST spends O(1) time for each node it visits, so the total running time is
O(V ), where V is the number of visited nodes. We split up V = L + X , where L
is the number of nodes returned from LIST, and X is the number of nodes that are
visited, but not output (extra nodes, or overhead). We argue that X = O(h), where
h is the height of the BST. Because the BST is an AVL, we use h = O(logN) to
conclude that the total running time of the NODE-LIST call in LIST isO(log(N)+L).
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We’ll sketch a proof that the extra nodes in the left sub-tree of the LCA node are all
on the path from the LCA to the l node. A symmetric proof covers the right sub-tree
of the LCA node. The proof refers to the tree below.

LCA

...

x

xL y

...

l

yR

...

h

Every node on the path from the LCA node to the l node falls under one of the follow-
ing two cases.

• The node l belongs to the node’s right sub-tree. Let x be the node’s key, and xL be
the node’s left sub-tree. Since the l node is in the x node’s left sub-tree, it follows
that l > x (by theBST invariant), so the xL sub-tree will be pruned by line 5 in
NODE-LIST. So NODE-LIST will never “stray” to the left of the path from the
LCA node to the l node.

• The node l belongs to the node’s left sub-tree. Let y be the node’s key, and
yR be the node’s right sub-tree. Since the l node is in the x node’s right sub-
tree, it follows that l < y (by the BST’s invariant). Every node in yR will have
a key greater than y (BST invariant), so all the keys in yR are greater than l.
Furthermore, because yR is in LCA’s left sub-tree, all the keys in yR are smaller
than the key in LCA, which is ≤ h. It follows that all the nodes in yR belong to
the (l, h] interval, and their keys will be returned from NODE-LIST. So, whenever
NODE-LIST “strays” to the right of the path from the LCA node to the l node, it
will output all the nodes it encounters.

The two cases above show that all the extra nodes (visited but not added to the result) in
the LCA node’s left sub-tree are on the path from LCA to l, which means X = O(h).
A symmetric proof can be used to show that all the extra nodes in the LCA node’s
right sub-tree are on the path from LCA to h.

(t) [1 point] Assuming that ADD-KEY runs in O(1) time, and that LIST returns a list of
L keys, the running time of LIST is

1. O(1)

2. O(log(logN))
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3. O(logN)

4. O(log2N)

5. O(
√
N)

6. O(1) +O(L)

7. O(log(logN)) +O(L)

8. O(logN) +O(L)

9. O(log2N) +O(L)

10. O(
√
N) +O(L)

Solution: O(logN) + O(L). According to the previous questions, LCA takes
O(logN) time, and the NODE-LIST call takes O(logN) +O(L) time.

(u) [20 points] Prove that LCA is correct.

Solution: We will argue that LCA(l, h) returns the least-common ancestor, defined
as the root of the smallest sub-tree that contains both l and h. If the keys l and/or h are
not in the BST, we augment the tree with the imaginary nodes that would be created
by inserting l and/or h using the BST insertion algorithm (no re-balancing).
Based on the definition above, we will prove that LCA is correct in two stages: first
we prove that LCA maintains the invariant that l and h belong to the sub-tree rooted
at node, then we prove that LCA returns the root of the smallest sub-tree that contains
both l and h.
LCA maintains the invariant that l and h belong to the sub-tree rooted at node.
node starts out at the tree’s root, so the invariant starts out to be true at line 2. The
loop continues as long as both l and h are smaller than node’s key, or l and h are both
bigger than node’s key. If l and h are smaller, then the condition on line 3 will be true,
so both l and h are in node’s left sub-tree, by the BST invariant, so line 4 preserves
the invariant. Similarly, if l and h are larger, they’re both in node’s right sub-tree, so
line 6 preserves the invariant.
LCA returns the root of the smallest sub-tree that contains both l and h. Proof by
contradiction:
Let r be the key of the node returned by LCA, and c be the key of the node that is the
correct answer. By the invariant above, l and h are in the sub-tree rooted at the r node,
so the c node is in the sub-tree rooted at r.
If c is in the r node’s left sub-tree, it follows that c < r. Since l and h are in the
sub-tree rooted at the c node, they are in r’s left sub-tree, so l < r and h < r by the
BST invariant. But in that case, the condition on line 2 will be true when idnode is the
r node, so the r node should not be returned from LCA. Contradiction.
The case where c is in the r node’s right sub-tree is symmetrical, as both l and h will
be in r’s sub-tree and l > r, h > r.
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Problem 3-2. [55 points] Digital Circuit Layout
Your AMDtel internship is off to a great start! The optimized circuit simulator cemented your
reputation as an algorithms whiz. Your manager capitalized on your success, and promised to
deliver the Bullfield chip a few months ahead of schedule. Thanks to your simulator optimizations,
the engineers have finished the logic-level design, and are currently working on laying out the
gates on the chip. Unfortunately, the software that verifies the layout is taking too long to run
on the preliminary Bullfield layouts, and this is making the engineers slow and unhappy. Your
manager is confident in your abilities to speed it up, and promised that you’ll “do your magic”
again, in “one week, two weeks tops”.

A chip consists of logic gates, whose input and output terminals are connected by wires (very
thin conductive traces on the silicon substrate). AMDtel’s high-yield manufacturing process only
allows for horizontal or vertical wires. Wires must not cross each other, so that the circuit will
function according to its specification. This constraint is checked by the software tool that you
will optimize. The topologies required by complex circuits are accomplished by having dozens of
layers of wires that do not touch each other, and the tool works on one layer at a time.

(a) [1 point] Run the code under the python profiler with the command below, and iden-
tify the method that takes up most of the CPU time. If two methods have similar CPU
usage times, ignore the simpler one.
python -m cProfile -s time circuit2.py < tests/10grid s.in

Warning: the command above can take 15-60 minutes to complete, and bring the
CPU usage to 100% on one of your cores. Plan accordingly. If you have installed
PyPy successfully, you can replace python with pypy in the command above for a
roughly 2x speed improvement.
What is the name of the method with the highest CPU usage?

Solution: The first line in the profiler output identifies intersects as the method
with the largest CPU usage.

(b) [1 point] How many times is the method called?

Solution: The first line in the profiler output indicates that intersects is called
187590314 times.

The method that has the performance bottleneck is called from the CrossVerifier class. Upon
reading the class, it seems that the original author was planning to implement a sweep-line algo-
rithm, but couldn’t figure out the details, and bailed and implemented an inefficient method at the
last minute. Fortunately, most of the infrastructure for a fast sweep-line algorithm is still in place.
Furthermore, you notice that the source code contains a trace of the working sweep-line algorithm,
in the good trace.jsonp file.

Sweep-line algorithms are popular in computational geometry. Conceptually, such an algorithm
sweeps a vertical line left to right over the plane containing the input data, and performs operations
when the line “hits” point of interest in the input. This is implemented by generating an array
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containing all the points of interest, and then sorting them according to their position along the
horizontal axis (x coordinate).

Read the source for CrossVerifier to get a feel for how the sweep-line infrastructure is sup-
posed to work, and look at the good trace in the visualizer that we have provided for you. To see
the good trace, copy good trace.jsonp to trace.jsonp

cp good trace.jsonp trace.jsonp

On Windows, use the following command instead.

copy good trace.jsonp trace.jsonp

Then use Google Chrome to open visualizer/bin/visualizer.html

The questions below refer to the fast sweep-line algorithm shown in good trace.jsonp, not
to the slow algorithm hacked together in circuit2.py.

(c) [5 points] The x coordinates of points of interest in the input are (True / False)

1. the x coordinates of the left endpoints of horizontal wires
2. the x coordinates of the right endpoints of horizontal wires
3. the x coordinates of midpoints of horizontal wires
4. the x coordinates where horizontal wires cross vertical wires
5. the x coordinates of vertical wires

Solution: The x coordinates of both endpoints of horizontal wires, and of vertical
wires. The algoritm doesn’t handle wire midpoints specially. Crossing points cannot
possibly be points of interest, because they are the algorithm’s output, not input.

(d) [1 point] When the sweep line hits the x coordinate of the left endpoint of a horizontal
wire

1. the wire is added to the range index
2. the wire is removed from the range index
3. a range index query is performed
4. nothing happens

Solution: The wire is added to the range index when the sweep line hits the x coor-
dinate of the left endpoint.

(e) [1 point] When the sweep line hits the x coordinate of the right endpoint of a hori-
zontal wire

1. the wire is added to the range index
2. the wire is removed from the range index
3. a range index query is performed
4. nothing happens
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Solution: The wire is removed from the range index when the sweep line hits the X
coordinate of the right endpoint.

(f) [1 point] When the sweep line hits the x coordinate of the midpoint of a horizontal
wire

1. the wire is added to the range index
2. the wire is removed from the range index
3. a range index query is performed
4. nothing happens

Solution: Nothing happens.

(g) [1 point] When the sweep line hits the x coordinate of a vertical wire

1. the wire is added to the range index
2. the wire is removed from the range index
3. a range index query is performed
4. nothing happens

Solution: A range index is performed.

(h) [1 point] What is a good invariant for the sweep-line algorithm?

1. the range index holds all the horizontal wires to the left of the sweep line
2. the range index holds all the horizontal wires “stabbed” by the sweep line
3. the range index holds all the horizontal wires to the right of the sweep line
4. the range index holds all the wires to the left of the sweep line
5. the range index holds all the wires to the right of the sweep line

Solution: The invariant for the sweep-line algorithm is that the range index holds all
the horizontal wires “stabbed” by the sweep line.

(i) [1 point] When a wire is added to the range index, what is its corresponding key?

1. the x coordinate of the wire’s midpoint
2. the y coordinate of the wire’s midpoint
3. the segment’s length
4. the x coordinate of the point of interest that will remove the wire from the index

Solution: The only correct answer is “the Y coordinate of the wire’s midpoint”.
Only horizontal wires are added to the range index, and all their points have the same
Y coordinate.

Modify CrossVerifier in circuit2.py to implement the sweep-line algorithm discussed
above. If you maintain the current code structure, you’ll be able to use our visualizer to debug your
implementation. To use our visualizer, first produce a trace.
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TRACE=jsonp python circuit2.py < tests/5logo.in > trace.jsonp

On Windows, run the following command instead.

circuit2 jsonp.bat < tests/5logo.in > trace.jsonp

Then use Google Chrome to open visualizer/bin/visualizer.html

(j) [1 point] Run your modified code under the python profiler again, using the same test
case as before, and identify the method that takes up the most CPU time.
What is the name of the method with the highest CPU usage? If two methods have
similar CPU usage times, ignore the simpler one.

Solution: The first line in the profiler output identifies count as the method with
the highest CPU usage.

(k) [1 point] How many times is the method called?

Solution: The first line in the profiler output indicates that count is called 20000
times.

(l) [40 points] Modify circuit2.py to implement a data structure that has better
asymptotic running time for the operation above. Keep in mind that the tool has two
usage scenarios:

• Every time an engineer submits a change to one of the Bullhorn wire layers,
the tool must analyze the layer and report the number of wire crossings. In this
late stage of the project, the version control system will automatically reject the
engineer’s change if it causes the number of wire crossings to go up over the
previous version.

• Engineers working on the wiring want to see the pairs of wires that intersect, so
they know where to focus ther efforts. To activate this detailed output, run the
tool using the following command.
TRACE=list python circuit2.py < tests/6list logo.in
On Windows, run the following command instead.
circuit2 list.bat < tests/6list logo.in

When your code passes all tests, and runs reasonably fast (the tests should complete
in less than 60 seconds on any reasonably recent computer), upload your modified
circuit.py to the course submission site.

Solution: The solution archive on the course Web site contains the staff’s solution
and secret test cases.

15



 
 

 
 
 

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



