### 6.003: Signals and Systems

Feedback and Control


Courtesy of Jason Dorfman MIT / CSAIL. Used with permission.

## Example: Perching

Can we make a fixed-wing UAV land on a perch like a bird?


## The "Perching" Problem



Courtesy of Leon van Dommelen and Szu-Chuan Wang. Used with permission.


Photo from Naval Historical Center Aircraft Data Series.

## Dimensionless Analysis

- Bird or plane...
- with mass $m$, wing area $S$, operating in a fluid with density $\rho$
- which requires a distance $x$ to slow from $V_{0}$ to $V_{f}$
- Distance-averaged drag coefficient, $\mathrm{C}_{\mathrm{D}}$ :

$$
\left\langle C_{D}\right\rangle=\frac{2 m}{\rho S x} \ln \left(\frac{V_{0}}{V_{f}}\right)
$$

- A few (very preliminary) reference points:

| Vehicle | Average $C_{D}$ |
| :---: | :---: |
| Boeing 747 | 0.16 |
| X-31 | 0.3 |
| Cornell Perching Plane | 0.25 |
| Common Pigeon | 10 |

Photos of Cornell perching plane and landing pigeon removed due to copyright restrictions.

U.S. Navy photo by James Darcy.

Image removed due to copyright restrictions. Please see SlowMoHighSpeed. "Photron SA2 Camera - Eagle Owl in Flight." October 27, 2008. YouTube. Accessed September 25, 2012. http://www.youtube.com/watch?v=LA6XSrMOV_0

## Experiment Design

- Glider (no propellor)
- Flat plate wings
- Dihedral (passive roll stability)
- Offboard sensing and control



## System Identification

- Nonlinear rigid-body vehicle model
- Linear actuator model (+ saturations, delay)
- Real flight data (no wind tunnel)



## System Identification

Lift Coefficient


Drag Coefficient


## A Dynamic Model



- Planar dynamics
- Aerodynamics fit from data
- State: $\mathbf{x}=[x, y, \theta, \phi, \dot{x}, \dot{y}, \dot{\theta}]$
- Actuator: $\mathbf{u}=\dot{\phi}$


## Perching Results

- Enters motion capture @ $6 \mathrm{~m} / \mathrm{s}$
- Perch in < 3.5m away

Requires separation!

- Entire trajectory < Is



Courtesy of Jason Dorfman MIT / CSAIL. Used with permission.

## Dimensionless Analysis

| Vehicle | Average $C_{D}$ |
| :---: | :---: |
| Boeing 747 | 0.16 |
| X-3I | 0.3 |
| Cornell Perching Plane | 0.25 |
| Common Pigeon | 10 |
| Our glider | 1.1 |
| Cobra maneuver (Mig) | 0.9 |

## Feedback is essential...

- to compensate for initial condition errors, disturbances, and imperfect model
- agile airplanes are open loop unstable

open loop

feedback


## Today's goal

Use systems theory to gain insight into how to control a system.

## Example: wallFinder System

Approach a wall, stopping a desired distance $d_{i}$ in front of it.


What causes these different types of responses?

## Structure of a Control Problem

(Simple) Control systems have three parts.


The plant is the system to be controlled.
The sensor measures the output of the plant.
The controller specifies a command $C$ to the plant based on the difference between the input $X$ and sensor output $S$.

## Analysis of wallFinder System

Cast wallFinder problem into control structure.

proportional controller: $\quad v[n]=K e[n]=K\left(d_{i}[n]-d_{s}[n]\right)$ Iocomotion: $\quad d_{o}[n]=d_{o}[n-1]-T v[n-1]$
sensor with no delay: $d_{s}[n]={ }_{18}^{d_{o}}[n]$

## Analysis of wallFinder System: Block Diagram

Visualize as block diagram.

proportional controller: $\quad v[n]=K e[n]=K\left(d_{i}[n]-d_{s}[n]\right)$
Iocomotion: $\quad d_{o}[n]=d_{o}[n-1]-T v[n-1]$
sensor with no delay: $d_{s}[n]=d_{o}[n]$


## Analysis of wallFinder System: System Function

Solve.


$$
\frac{D_{o}}{D_{i}}=\frac{\frac{-K T \mathcal{R}}{1-\mathcal{R}}}{1+\frac{-K T \mathcal{R}}{1-\mathcal{R}}}=\frac{-K T \mathcal{R}}{1-\mathcal{R}-K T \mathcal{R}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}
$$

## Analysis of wallFinder System: Poles

The system function contains a single pole at $z=1+K T$.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}
$$

Unit-sample response for $K T=-0.2$ :


Unit-step response $s[n]$ for $K T=-0.2$ :


What determines the speed of the response? Could it be faster?

## Check Yourself

Find $K T$ for fastest convergence of unit-sample response.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}
$$

1. $K T=-2$
2. $K T=-1$
3. $K T=0$
4. $K T=1$
5. $K T=2$
6. none of the above

## Check Yourself

Find $K T$ for fastest convergence of unit-sample response.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}
$$

If $K T=-1$ then the pole is at $z=0$.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}=\mathcal{R}
$$

Unit-sample response has a single non-zero output sample, at $n=1$.

## Analysis of wallFinder System: Poles

The poles of the system function provide insight for choosing $K$.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}=\frac{\left(1-p_{o}\right) \mathcal{R}}{1-p_{o} \mathcal{R}} ; \quad p_{0}=1+K T
$$



$0<p_{0}<1$
$-1<p_{0}<0$
$-1<K T<0$
monotonic
converging
$-2<K T<-1$
alternating
converging

## Check Yourself

Find $K T$ for fastest convergence of unit-sample response.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-(1+K T) \mathcal{R}}
$$

1. $K T=-2$
2. $K T=-1$
3. $K T=0$
4. $K T=1$
5. $K T=2$
6. none of the above

## Analysis of wallFinder System

The optimum gain $K$ moves robot to desired position in one step.


$$
\begin{aligned}
& K T=-1 \\
& K=-\frac{1}{T}=-\frac{1}{1 / 10}=-10 \\
& v[n]=K\left(d_{i}[n]-d_{o}[n]\right)=-10(1-2)=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

exactly the right speed to get there in one step!

## Analyzing wallFinder: Space-Time Diagram

The optimum gain $K$ moves robot to desired position in one step.


## Analyzing wallFinder: Space-Time Diagram

The optimum gain $K$ moves robot to desired position in one step.


## Analyzing wallFinder: Space-Time Diagram

The optimum gain $K$ moves robot to desired position in one step.


## Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

proportional controller: $\quad v[n]=K e[n]=K\left(d_{i}[n]-d_{s}[n]\right)$
Iocomotion: $\quad d_{o}[n]=d_{o}[n-1]-T v[n-1]$
sensor with delay: $d_{s}[n]=d_{o}[\mathbf{n}-\mathbf{1}]$

## Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.


## Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.


## Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.


## Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.


## Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.


## Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

proportional controller: $v[n]=K e[n]=K\left(d_{i}[n]-d_{s}[n]\right)$
Iocomotion: $\quad d_{o}[n]=d_{o}[n-1]-T v[n-1]$
sensor with delay: $d_{s}[n]=d_{o}[n-1]$


## Check Yourself

Find the system function $H=\frac{D_{o}}{D_{i}}$.


1. $\frac{K T \mathcal{R}}{1-\mathcal{R}}$
2. $\frac{-K T \mathcal{R}}{1+\mathcal{R}-K T \mathcal{R}^{2}}$
3. $\frac{K T \mathcal{R}}{1-\mathcal{R}}-K T \mathcal{R}$
4. $\frac{-K T \mathcal{R}}{1-\mathcal{R}-K T \mathcal{R}^{2}}$
5. none of the above

## Check Yourself

Find the system function $H=\frac{D_{o}}{D_{i}}$.


Replace accumulator with equivalent block diagram.

$$
\begin{aligned}
D_{i} \rightarrow+\rightarrow \frac{\mathcal{R}}{1-\mathcal{R}} \rightarrow D_{o} \\
\frac{D_{o}}{D_{i}}=\frac{\frac{-K T \mathcal{R}}{1-\mathcal{R}}}{1+\frac{-K T \mathcal{R}^{2}}{1-\mathcal{R}}}=\frac{-K T \mathcal{R}}{1-\mathcal{R}-K T \mathcal{R}^{2}}
\end{aligned}
$$

## Check Yourself

Find the system function $H=\frac{D_{o}}{D_{i}}$.


1. $\frac{K T \mathcal{R}}{1-\mathcal{R}}$
2. $\frac{-K T \mathcal{R}}{1+\mathcal{R}-K T \mathcal{R}^{2}}$
3. $\frac{K T \mathcal{R}}{1-\mathcal{R}}-K T \mathcal{R}$
4. $\frac{-K T \mathcal{R}}{1-\mathcal{R}-K T \mathcal{R}^{2}}$
5. none of the above

## Analyzing wallFinder: Poles

Substitute $\mathcal{R} \rightarrow \frac{1}{z}$ in the system functional to find the poles.

$$
\frac{D_{o}}{D_{i}}=\frac{-K T \mathcal{R}}{1-\mathcal{R}-K T \mathcal{R}^{2}}=\frac{-K T \frac{1}{z}}{1-\frac{1}{z}-K T \frac{1}{z^{2}}}=\frac{-K T z}{z^{2}-z-K T}
$$

The poles are then the roots of the denominator.

$$
z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+K T}
$$

## Feedback and Control: Poles

If $K T$ is small, the poles are at $z \approx-K T$ and $z \approx 1+K T$.
$z=\frac{1}{2} \pm \sqrt{\frac{1}{2}^{2}+K T} \approx \frac{1}{2} \pm \sqrt{\frac{1}{2}+K T^{2}}=1+K T,-K T$


Pole near 0 generates fast response.
Pole near 1 generates slow response.
Slow mode (pole near 1) dominates the response.

## Feedback and Control: Poles

As $K T$ becomes more negative, the poles move toward each other and collide at $z=\frac{1}{2}$ when $K T=-\frac{1}{4}$.
$z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+K T}=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}-\frac{1}{4}}=\frac{1}{2}, \frac{1}{2}$


Persistent responses decay. The system is stable.

## Feedback and Control: Poles

If $K T<-1 / 4$, the poles are complex.

$$
z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+K T}=\frac{1}{2} \pm j \sqrt{-K T-\left(\frac{1}{2}\right)^{2}}
$$



Complex poles $\rightarrow$ oscillations.

## Same oscillation we saw earlier!

Adding delay tends to destabilize control systems.


## Check Yourself



What is the period of the oscillation?

1. 1
2. 2
3. 3
4. 4
5. 6
6. none of above

## Check Yourself



$$
p_{0}=\frac{1}{2} \pm j \frac{\sqrt{3}}{2}=e^{ \pm j \pi / 3}
$$

$$
p_{0}^{n}=e^{ \pm j \pi n / 3}
$$

$$
\underbrace{e^{ \pm j 0 \pi / 3}}_{1}, e^{ \pm j \pi / 3}, e^{ \pm j 2 \pi / 3}, e^{ \pm j 3 \pi / 3}, e^{ \pm j 4 \pi / 3}, e^{ \pm j 5 \pi / 3}, \underbrace{e^{ \pm j 6 \pi / 3}}_{e^{ \pm j 2 \pi}=1}
$$

## Check Yourself



What is the period of the oscillation?

1. 1
2. 2
3. 3
4. 4
5. 6
6. none of above

## Feedback and Control: Poles

The closed loop poles depend on the gain.


If $K T: 0 \rightarrow-\infty:$ then $z_{1}, z_{2}: 0,1 \rightarrow \frac{1}{2}, \frac{1}{2} \rightarrow \frac{1}{2} \pm j \infty$

## Check Yourself

Find $K T$ for fastest response.


## Check Yourself

$$
z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+K T}
$$

The dominant pole always has a magnitude that is $\geq \frac{1}{2}$.
It is smallest when there is a double pole at $z=\frac{1}{2}$.

Therefore, $K T=-\frac{1}{4}$.

## Check Yourself

Find $K T$ for fastest response.

closed-loop poles

$$
\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+K T}
$$

1. 0
2. $-\frac{1}{4}$
3. $-\frac{1}{2}$
4. -1
5. $-\infty$
6. none of above

## Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.
Ideal sensor: $d_{s}[n]=d_{o}[n]$
More realistic sensor (with delay): $d_{S}[n]=d_{o}[n-1]$



Fastest response without delay: single pole at $z=0$.
Fastest response with delay: double pole at $z=\frac{1}{2}$. much slower!

## Destabilizing Effect of Delay

Adding more delay in the feedback loop is even worse.
More realistic sensor (with delay): $d_{s}[n]=d_{o}[n-1]$
Even more delay: $d_{s}[n]=d_{o}[n-2]$



Fastest response with delay: double pole at $z=\frac{1}{2}$.
Fastest response with more delay: double pole at $z=0.682$.

## Feedback and Control: Summary

Feedback is an elegant way to design a control system.

Stability of a feedback system is determined by its dominant pole.

Delays tend to decrease the stability of a feedback system.


Photo from Naval Historical Center Aircraft Data Series.

MIT OpenCourseWare
http://ocw.mit.edu
6.003 Signals and Systems

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

