# 6.003: Signals and Systems

**Continuous-Time Systems** 

### Multiple Representations of Discrete-Time Systems

Discrete-Time (DT) systems can be represented in different ways to more easily address different types of issues.

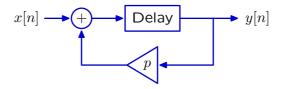
Verbal descriptions: preserve the rationale.

"Next year, your account will contain p times your balance from this year plus the money that you added this year."

**Difference equations:** mathematically compact.

$$y[n+1] = x[n] + py[n]$$

**Block diagrams:** illustrate signal flow paths.



**Operator representations:** analyze systems as polynomials.

$$(1 - p\mathcal{R})Y = \mathcal{R}X$$

### Multiple Representations of Continuous-Time Systems

Similar representations for Continuous-Time (CT) systems.

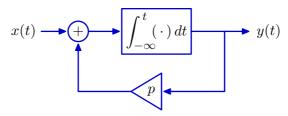
**Verbal descriptions:** preserve the rationale.

"Your account will grow in proportion to your balance plus the rate at which you deposit."

**Differential equations:** mathematically compact.

$$\frac{dy(t)}{dt} = x(t) + py(t)$$

**Block diagrams:** illustrate signal flow paths.

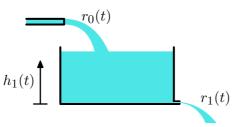


**Operator representations:** analyze systems as polynomials.

$$(1 - pA)Y = AX$$

### **Differential Equations**

Differential equations are mathematically precise and compact.



We can represent the tank system with a differential equation.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t) - r_1(t)}{\tau}$$

You already know lots of methods to solve differential equations:

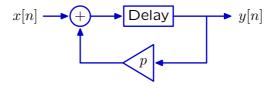
- general methods (separation of variables; integrating factors)
- homogeneous and particular solutions
- inspection

Today: new methods based on **block diagrams** and **operators**, which provide new ways to think about systems' behaviors.

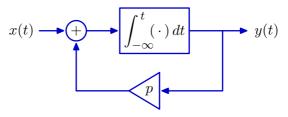
### **Block Diagrams**

Block diagrams illustrate signal flow paths.

**DT:** adders, scalers, and delays – represent systems described by linear difference equations with constant coefficients.



**CT:** adders, scalers, and integrators – represent systems described by a linear differential equations with constant coefficients.



Delays in DT are replaced by integrators in CT.

### **Operator Representation**

CT Block diagrams are concisely represented with the  ${\cal A}$  operator.

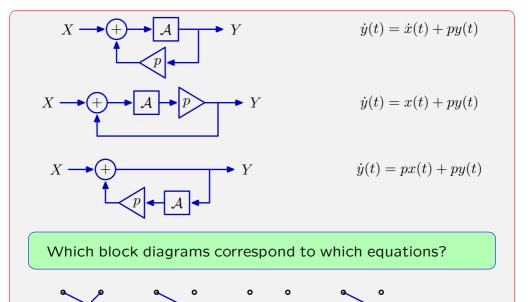
Applying  $\mathcal A$  to a CT signal generates a new signal that is equal to the integral of the first signal at all points in time.

$$Y = AX$$

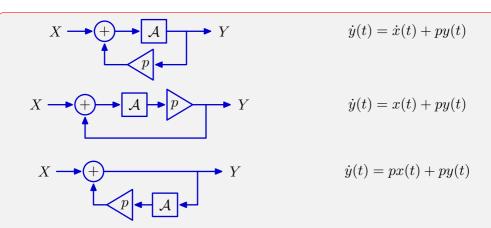
is equivalent to

$$y(t) = \int_{-\infty}^{t} x(\tau) \, d\tau$$

for all time t.



5. none



Which block diagrams correspond to which equations?







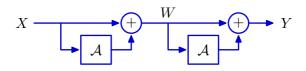


5. none

# **Evaluating Operator Expressions**

As with  $\mathcal{R}$ ,  $\mathcal{A}$  expressions can be manipulated as polynomials.

### Example:



$$w(t) = x(t) + \int_{-\infty}^{t} x(\tau)d\tau$$

$$y(t) = w(t) + \int_{-\infty}^{t} w(\tau)d\tau$$

$$y(t) = x(t) + \int_{-\infty}^{t} x(\tau)d\tau + \int_{-\infty}^{t} x(\tau)d\tau + \int_{-\infty}^{t} \left(\int_{-\infty}^{\tau_2} x(\tau_1)d\tau_1\right)d\tau_2$$

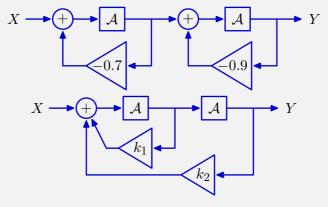
$$W = (1 + A) X$$
  
 
$$Y = (1 + A) W = (1 + A)(1 + A) X = (1 + 2A + A^{2}) X$$

# **Evaluating Operator Expressions**

Expressions in  ${\cal A}$  can be manipulated using rules for polynomials.

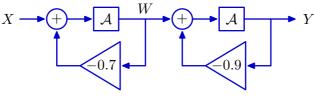
- Commutativity: A(1-A)X = (1-A)AX
- Distributivity:  $A(1-A)X = (A-A^2)X$
- Associativity:  $((1-\mathcal{A})\mathcal{A})(2-\mathcal{A})X = (1-\mathcal{A})(\mathcal{A}(2-\mathcal{A}))X$

Determine  $k_1$  so that these systems are "equivalent."

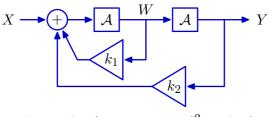


- 1. 0.7 2. 0.9 3. 1.6 4. 0.63 5. none of these

Write operator expressions for each system.



$$\frac{W=\mathcal{A}(X-0.7W)}{Y=\mathcal{A}(W-0.9Y)} \rightarrow \frac{(1+0.7\mathcal{A})W=\mathcal{A}X}{(1+0.9\mathcal{A})Y=\mathcal{A}W} \rightarrow \frac{(1+0.7\mathcal{A})(1+0.9\mathcal{A})Y=\mathcal{A}^2X}{(1+1.6\mathcal{A}+0.63\mathcal{A}^2)Y=\mathcal{A}^2X}$$



$$W = \mathcal{A}(X + k_1 W + k_2 Y)$$

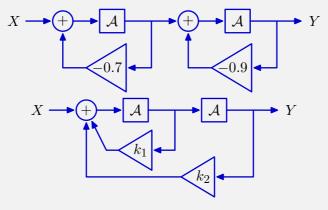
$$Y = \mathcal{A}W$$

$$Y = \mathcal{A}^2 X + k_1 \mathcal{A}Y + k_2 \mathcal{A}^2 Y$$

$$(1 - k_1 \mathcal{A} - k_2 \mathcal{A}^2)Y = \mathcal{A}^2 X$$

 $k_1 = -1.6$ 

Determine  $k_1$  so that these systems are "equivalent."

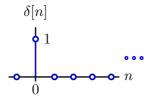


- 1. 0.7 2. 0.9 3. 1.6 4. 0.63 5. none of these

# **Elementary Building-Block Signals**

Elementary DT signal:  $\delta[n]$ .

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0; \\ 0, & \text{otherwise} \end{cases}$$



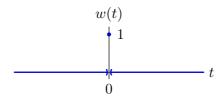
- simplest non-trivial signal (only one non-zero value)
- shortest possible duration (most "transient")
- useful for constructing more complex signals

What CT signal serves the same purpose?

# **Elementary CT Building-Block Signal**

Consider the analogous CT signal: w(t) is non-zero only at t=0.

$$w(t) = \begin{cases} 0 & t < 0 \\ 1 & t = 0 \\ 0 & t > 0 \end{cases}$$



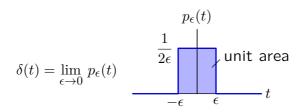
Is this a good choice as a building-block signal? No

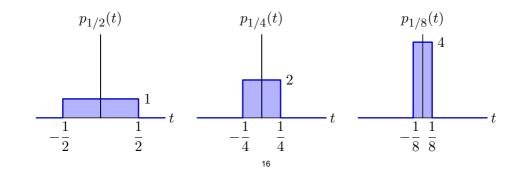
$$w(t) \longrightarrow \int_{-\infty}^{t} (\cdot) dt \longrightarrow 0$$

The integral of w(t) is zero!

# **Unit-Impulse Signal**

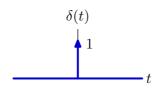
The unit-impulse signal acts as a pulse with unit area but zero width.





### **Unit-Impulse Signal**

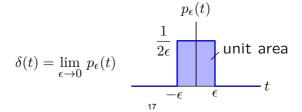
The unit-impulse function is represented by an arrow with the number 1, which represents its area or "weight."



It has two seemingly contradictory properties:

- it is nonzero only at t=0, and
- its definite integral  $(-\infty, \infty)$  is one!

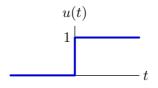
Both of these properties follow from thinking about  $\delta(t)$  as a limit:



### **Unit-Impulse and Unit-Step Signals**

The indefinite integral of the unit-impulse is the unit-step.

$$u(t) = \int_{-\infty}^{t} \delta(\lambda) \, d\lambda = \begin{cases} 1; & t \ge 0 \\ 0; & \text{otherwise} \end{cases}$$

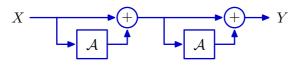


### Equivalently

$$\delta(t) \longrightarrow \mathcal{A} \longrightarrow u(t)$$

### Impulse Response of Acyclic CT System

If the block diagram of a CT system has no feedback (i.e., no cycles), then the corresponding operator expression is "imperative."

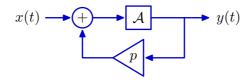


$$Y = (1 + A)(1 + A) X = (1 + 2A + A^{2}) X$$

If 
$$x(t) = \delta(t)$$
 then

$$y(t) = (1 + 2\mathcal{A} + \mathcal{A}^2)\,\delta(t) = \delta(t) + 2u(t) + tu(t)$$

Find the impulse response of this CT system with feedback.



Method 1: find differential equation and solve it.

$$\dot{y}(t) = x(t) + py(t)$$

Linear, first-order difference equation with constant coefficients.

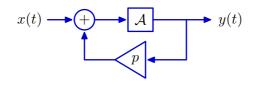
Try 
$$y(t) = Ce^{\alpha t}u(t)$$
.

Then 
$$\dot{y}(t) = \alpha C e^{\alpha t} u(t) + C e^{\alpha t} \delta(t) = \alpha C e^{\alpha t} u(t) + C \delta(t)$$
.

Substituting, we find that  $\alpha Ce^{\alpha t}u(t) + C\delta(t) = \delta(t) + pCe^{\alpha t}u(t)$ .

Therefore  $\alpha = p$  and  $C = 1 \rightarrow y(t) = e^{pt}u(t)$ .

Find the impulse response of this CT system with feedback.



Method 2: use operators.

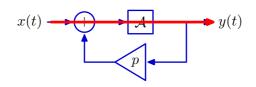
$$Y = \mathcal{A}(X + pY)$$
$$\frac{Y}{X} = \frac{\mathcal{A}}{1 - p\mathcal{A}}$$

Now expand in ascending series in A:

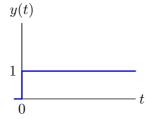
$$\frac{Y}{X} = \mathcal{A}(1 + p\mathcal{A} + p^2\mathcal{A}^2 + p^3\mathcal{A}^3 + \cdots)$$

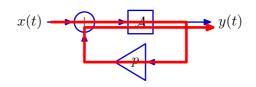
If  $x(t) = \delta(t)$  then

$$y(t) = \mathcal{A}(1 + p\mathcal{A} + p^2\mathcal{A}^2 + p^3\mathcal{A}^3 + \cdots) \,\delta(t)$$
  
=  $(1 + pt + \frac{1}{2}p^2t^2 + \frac{1}{6}p^3t^3 + \cdots) \,u(t) = e^{pt}u(t)$ .

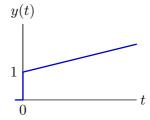


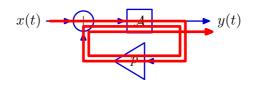
$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



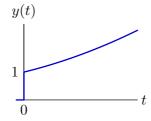


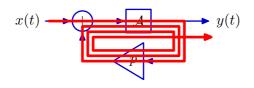
$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



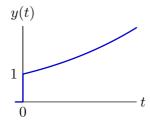


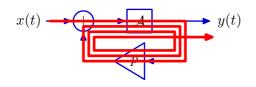
$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



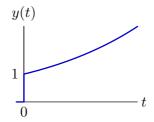


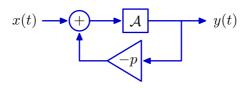
$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



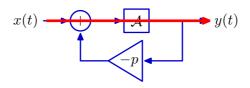


$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t) = e^{pt}u(t)$$

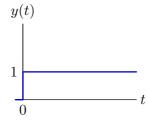


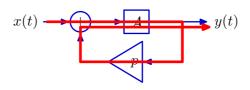


$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$

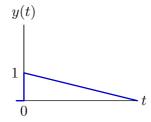


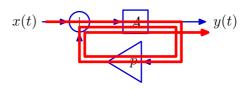
$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



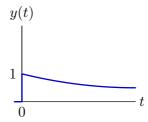


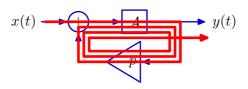
$$y(t) = (\mathcal{A} - p\mathcal{A}^2 + p^2\mathcal{A}^3 - p^3\mathcal{A}^4 + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^2t^2 - \frac{1}{6}p^3t^3 + \cdots) u(t)$$



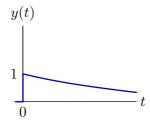


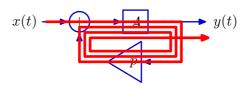
$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



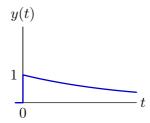


$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$



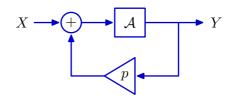


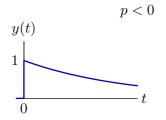
$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t) = e^{-pt}u(t)$$

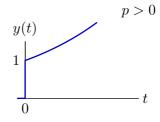


### **Convergent and Divergent Poles**

The fundamental mode associated with p converges if p < 0 and diverges if p > 0.

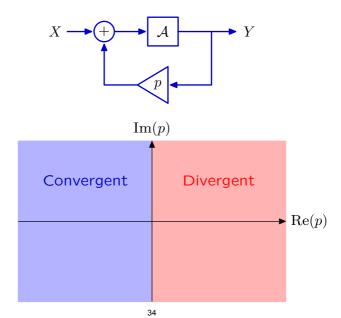




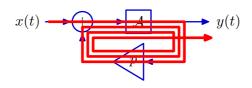


### **Convergent and Divergent Poles**

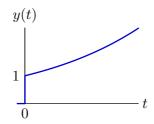
The fundamental mode associated with p converges if p < 0 and diverges if p > 0.



In CT, each cycle adds a new integration.



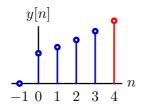
$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t) = e^{pt}u(t)$$



In DT, each cycle creates another sample in the output.

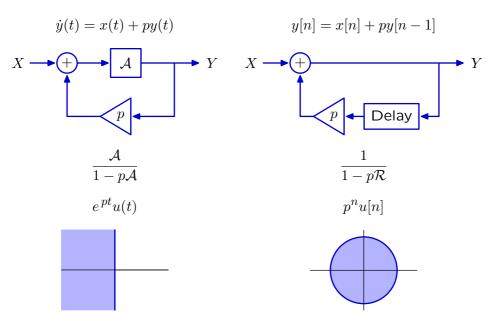


$$y[n] = (1 + p\mathcal{R} + p^2\mathcal{R}^2 + p^3\mathcal{R}^3 + p^4\mathcal{R}^4 + \cdots) \,\delta[n]$$
  
=  $\delta[n] + p\delta[n-1] + p^2\delta[n-2] + p^3\delta[n-3] + p^4\delta[n-4] + \cdots$ 



### Summary: CT and DT representations

Many similarities and important differences.



#### **Check Yourself**

# Which functionals represent convergent systems?

$$\frac{1}{1 - \frac{1}{4}\mathcal{R}^2}$$

$$\frac{1}{1 - \frac{1}{4}\mathcal{A}^2}$$

$$\frac{1}{1+2\mathcal{R}+\frac{3}{4}\mathcal{R}^2}$$

$$\frac{1}{1+2\mathcal{A}+\frac{3}{4}\mathcal{A}^2}$$

3. 
$$\sqrt[4]{\sqrt[4]{}}$$

1.  $\sqrt{\frac{\times}{\times}}$  2.  $\sqrt{\frac{\times}{\times}}$  3.  $\sqrt{\frac{\times}{\times}}$  4.  $\sqrt{\frac{\times}{\times}}$  5. none of these

#### **Check Yourself**

$$\frac{1}{1 - \frac{1}{4}\mathcal{R}^2} = \frac{1}{(1 - \frac{1}{2}\mathcal{R})(1 + \frac{1}{2}\mathcal{R})}$$

both inside unit circle

 $\sqrt{}$ 

$$\frac{1}{1 - \frac{1}{4}A^2} = \frac{1}{(1 - \frac{1}{2}A)(1 + \frac{1}{2}A)}$$

left & right half-planes

X

$$\frac{1}{1+2\mathcal{R}+\frac{3}{4}\mathcal{R}^2} = \frac{1}{(1+\frac{1}{2}\mathcal{R})(1+\frac{3}{2}\mathcal{R})}$$

inside & outside unit circle

$$\frac{1}{1 + 2\mathcal{A} + \frac{3}{4}\mathcal{A}^2} = \frac{1}{(1 + \frac{1}{2}\mathcal{A})(1 + \frac{3}{2}\mathcal{A})}$$

both left half plane

/

X

#### **Check Yourself**

# Which functionals represent convergent systems? 4

$$\frac{1}{1 - \frac{1}{4}\mathcal{R}^2}$$

$$\frac{1}{1 - \frac{1}{4}\mathcal{A}^2}$$

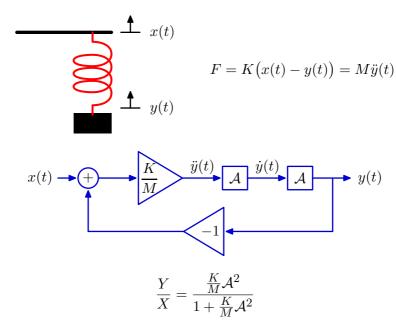
$$\frac{1}{1+2\mathcal{R}+\frac{3}{4}\mathcal{R}^2}$$

$$\frac{1}{1+2\mathcal{A}+\frac{3}{4}\mathcal{A}^2}$$

3. 
$$\sqrt[4]{\sqrt{}}$$

1.  $\sqrt[4]{\times}$  2.  $\sqrt[4]{\times}$  3.  $\sqrt[4]{\sqrt}$  4.  $\sqrt[4]{\times}$  5. none of these

Use the  $\ensuremath{\mathcal{A}}$  operator to solve the mass and spring system.



Factor system functional to find the poles.

$$\frac{Y}{X} = \frac{\frac{K}{M} \mathcal{A}^2}{1 + \frac{K}{M} \mathcal{A}^2} = \frac{\frac{K}{M} \mathcal{A}^2}{(1 - p_0 \mathcal{A})(1 - p_1 \mathcal{A})}$$

$$1 + \frac{K}{M}A^2 = 1 - (p_0 + p_1)A + p_0p_1A^2$$

The sum of the poles must be zero.

The product of the poles must be K/M.

$$p_0 = j\sqrt{\frac{K}{M}} \quad p_1 = -j\sqrt{\frac{K}{M}}$$

Alternatively, find the poles by substituting  $\mathcal{A} \to \frac{1}{s}$ . The poles are then the roots of the denominator.

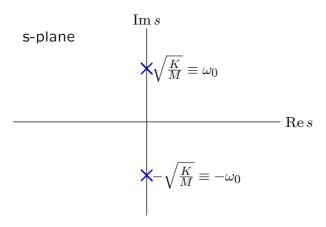
$$\frac{Y}{X} = \frac{\frac{K}{M}A^2}{1 + \frac{K}{M}A^2}$$

Substitute  $\mathcal{A} o rac{1}{s}$ :

$$\frac{Y}{X} = \frac{\frac{K}{M}}{s^2 + \frac{K}{M}}$$

$$s = \pm j\sqrt{\frac{K}{M}}$$

The poles are complex conjugates.



The corresponding fundamental modes have complex values.

fundamental mode 1:  $e^{j\omega_0 t} = \cos \omega_0 t + j \sin \omega_0 t$ 

fundamental mode 2:  $e^{-j\omega_0 t} = \cos \omega_0 t - j \sin \omega_0 t$ 

Real-valued inputs always excite combinations of these modes so that the imaginary parts cancel.

Example: find the impulse response.

$$\begin{split} \frac{Y}{X} &= \frac{\overset{K}{M}\mathcal{A}^2}{1 + \overset{K}{M}\mathcal{A}^2} = \frac{\overset{K}{M}}{p_0 - p_1} \left( \frac{\mathcal{A}}{1 - p_0 \mathcal{A}} - \frac{\mathcal{A}}{1 - p_1 \mathcal{A}} \right) \\ &= \frac{\omega_0^2}{2j\omega_0} \left( \frac{\mathcal{A}}{1 - j\omega_0 \mathcal{A}} - \frac{\mathcal{A}}{1 + j\omega_0 \mathcal{A}} \right) \\ &= \frac{\omega_0}{2j} \underbrace{\left( \frac{\mathcal{A}}{1 - j\omega_0 \mathcal{A}} \right) - \frac{\omega_0}{2j} \underbrace{\left( \frac{\mathcal{A}}{1 + j\omega_0 \mathcal{A}} \right)}_{\text{makes mode 1}} \right. \end{split}$$

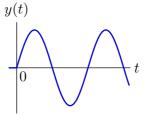
The modes themselves are complex conjugates, and their coefficients are also complex conjugates. So the sum is a sum of something and its complex conjugate, which is real.

The impulse response is therefore real.

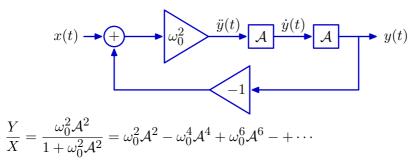
$$\frac{Y}{X} = \frac{\omega_0}{2j} \left( \frac{\mathcal{A}}{1 - j\omega_0 \mathcal{A}} \right) - \frac{\omega_0}{2j} \left( \frac{\mathcal{A}}{1 + j\omega_0 \mathcal{A}} \right)$$

The impulse response is

$$h(t) = \frac{\omega_0}{2j} e^{j\omega_0 t} - \frac{\omega_0}{2j} e^{-j\omega_0 t} = \omega_0 \sin \omega_0 t; \quad t > 0$$



Alternatively, find impulse response by expanding system functional.



If 
$$x(t) = \delta(t)$$
 then

$$y(t) = \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - + \cdots, \ t \ge 0$$

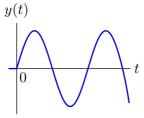
Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left( -\omega_0^2 \mathcal{A}^2 \right)^l$$

If  $x(t) = \delta(t)$  then

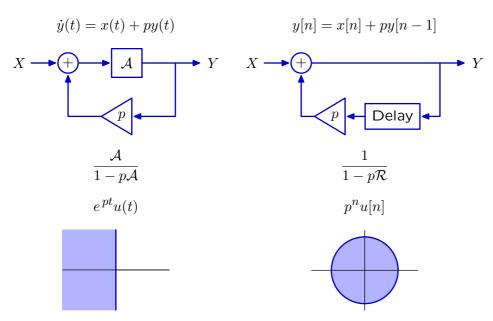
$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$=\omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \dots = \omega_0 \sin \omega_0 t$$



### Summary: CT and DT representations

Many similarities and important differences.



MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.