6.003: Signals and Systems

Continuous-Time Systems

Multiple Representations of Discrete-Time Systems

Discrete-Time (DT) systems can be represented in different ways to more easily address different types of issues.

Verbal descriptions: preserve the rationale.
"Next year, your account will contain p times your balance from this year plus the money that you added this year."

Difference equations: mathematically compact.

$$
y[n+1]=x[n]+p y[n]
$$

Block diagrams: illustrate signal flow paths.

Operator representations: analyze systems as polynomials.

$$
(1-p \mathcal{R}) Y=\mathcal{R} X
$$

Multiple Representations of Continuous-Time Systems

Similar representations for Continuous-Time (CT) systems.
Verbal descriptions: preserve the rationale.
"Your account will grow in proportion to your balance plus the rate at which you deposit."

Differential equations: mathematically compact.

$$
\frac{d y(t)}{d t}=x(t)+p y(t)
$$

Block diagrams: illustrate signal flow paths.

Operator representations: analyze systems as polynomials.

$$
(1-p \mathcal{A}) Y=\mathcal{A} X
$$

Differential Equations

Differential equations are mathematically precise and compact.

We can represent the tank system with a differential equation.

$$
\frac{d r_{1}(t)}{d t}=\frac{r_{0}(t)-r_{1}(t)}{\tau}
$$

You already know lots of methods to solve differential equations:

- general methods (separation of variables; integrating factors)
- homogeneous and particular solutions
- inspection

Today: new methods based on block diagrams and operators, which provide new ways to think about systems' behaviors.

Block Diagrams

Block diagrams illustrate signal flow paths.
DT: adders, scalers, and delays - represent systems described by linear difference equations with constant coefficents.

CT: adders, scalers, and integrators - represent systems described by a linear differential equations with constant coefficients.

Delays in DT are replaced by integrators in CT.

Operator Representation

CT Block diagrams are concisely represented with the \mathcal{A} operator.

Applying \mathcal{A} to a CT signal generates a new signal that is equal to the integral of the first signal at all points in time.

$$
Y=\mathcal{A} X
$$

is equivalent to

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau
$$

for all time t.

Check Yourself

$$
\dot{y}(t)=\dot{x}(t)+p y(t)
$$

$$
\dot{y}(t)=x(t)+p y(t)
$$

$$
\dot{y}(t)=p x(t)+p y(t)
$$

Which block diagrams correspond to which equations?
1.

2.

4.

Check Yourself

$$
\dot{y}(t)=\dot{x}(t)+p y(t)
$$

$$
\dot{y}(t)=x(t)+p y(t)
$$

$$
\dot{y}(t)=p x(t)+p y(t)
$$

Which block diagrams correspond to which equations? 1
1.

4.

5. none

Evaluating Operator Expressions

As with \mathcal{R}, \mathcal{A} expressions can be manipulated as polynomials.

Example:

$$
\begin{aligned}
& w(t)=x(t)+\int_{-\infty}^{t} x(\tau) d \tau \\
& y(t)=w(t)+\int_{-\infty}^{t} w(\tau) d \tau \\
& y(t)=x(t)+\int_{-\infty}^{t} x(\tau) d \tau+\int_{-\infty}^{t} x(\tau) d \tau+\int_{-\infty}^{t}\left(\int_{-\infty}^{\tau_{2}} x\left(\tau_{1}\right) d \tau_{1}\right) d \tau_{2} \\
& W=(1+\mathcal{A}) X \\
& Y=(1+\mathcal{A}) W=(1+\mathcal{A})(1+\mathcal{A}) X=\left(1+2 \mathcal{A}+\mathcal{A}^{2}\right) X
\end{aligned}
$$

Evaluating Operator Expressions

Expressions in \mathcal{A} can be manipulated using rules for polynomials.

- Commutativity: $\mathcal{A}(1-\mathcal{A}) X=(1-\mathcal{A}) \mathcal{A} X$
- Distributivity: $\mathcal{A}(1-\mathcal{A}) X=\left(\mathcal{A}-\mathcal{A}^{2}\right) X$
- Associativity: $((1-\mathcal{A}) \mathcal{A})(2-\mathcal{A}) X=(1-\mathcal{A})(\mathcal{A}(2-\mathcal{A})) X$

Check Yourself

Determine k_{1} so that these systems are "equivalent."

$\begin{array}{lllll}\text { 1. } 0.7 & \text { 2. } 0.9 & \text { 3. } 1.6 & \text { 4. } 0.63 & \text { 5. none of these }\end{array}$

Check Yourself

Write operator expressions for each system.

$$
\begin{gathered}
W=\mathcal{A}(X-0.7 W) \\
Y=\mathcal{A}(W-0.9 Y)
\end{gathered} \rightarrow \begin{gathered}
(1+0.7 \mathcal{A}) W=\mathcal{A} X \\
(1+0.9 \mathcal{A}) Y=\mathcal{A} W
\end{gathered} \rightarrow \begin{gathered}
(1+0.7 \mathcal{A})(1+0.9 \mathcal{A}) Y=\mathcal{A}^{2} X \\
\left(1+1.6 \mathcal{A}+0.63 \mathcal{A}^{2}\right) Y=\mathcal{A}^{2} X
\end{gathered}
$$

$$
\begin{array}{cc}
W=\mathcal{A}\left(X+k_{1} W+k_{2} Y\right) \\
Y=\mathcal{A} W
\end{array} \quad \rightarrow \quad \begin{aligned}
& Y=\mathcal{A}^{2} X+k_{1} \mathcal{A} Y+k_{2} \mathcal{A}^{2} Y \\
& \left(1-k_{1} \mathcal{A}-k_{2} \mathcal{A}^{2}\right) Y=\mathcal{A}^{2} X
\end{aligned}
$$

$$
k_{1}=-1.6
$$

Check Yourself

Determine k_{1} so that these systems are "equivalent."

1. 0.7
2. 0.9
3. 1.6
4. 0.63
5. none of these

Elementary Building-Block Signals

Elementary DT signal: $\delta[n]$.

$$
\delta[n]= \begin{cases}1, & \text { if } n=0 \\ 0, & \text { otherwise }\end{cases}
$$

- simplest non-trivial signal (only one non-zero value)
- shortest possible duration (most "transient")
- useful for constructing more complex signals

What CT signal serves the same purpose?

Elementary CT Building-Block Signal

Consider the analogous CT signal: $w(t)$ is non-zero only at $t=0$.

$$
w(t)= \begin{cases}0 & t<0 \\ 1 & t=0 \\ 0 & t>0\end{cases}
$$

Is this a good choice as a building-block signal? No

The integral of $w(t)$ is zero!

Unit-Impulse Signal

The unit-impulse signal acts as a pulse with unit area but zero width.

Unit-Impulse Signal

The unit-impulse function is represented by an arrow with the number 1, which represents its area or "weight."

It has two seemingly contradictory properties:

- it is nonzero only at $t=0$, and
- its definite integral $(-\infty, \infty)$ is one!

Both of these properties follow from thinking about $\delta(t)$ as a limit:

Unit-Impulse and Unit-Step Signals

The indefinite integral of the unit-impulse is the unit-step.

$$
u(t)=\int_{-\infty}^{t} \delta(\lambda) d \lambda= \begin{cases}1 ; & t \geq 0 \\ 0 ; & \text { otherwise }\end{cases}
$$

Equivalently

Impulse Response of Acyclic CT System

If the block diagram of a CT system has no feedback (i.e., no cycles), then the corresponding operator expression is "imperative."

$$
Y=(1+\mathcal{A})(1+\mathcal{A}) X=\left(1+2 \mathcal{A}+\mathcal{A}^{2}\right) X
$$

If $x(t)=\delta(t)$ then

$$
y(t)=\left(1+2 \mathcal{A}+\mathcal{A}^{2}\right) \delta(t)=\delta(t)+2 u(t)+t u(t)
$$

CT Feedback

Find the impulse response of this CT system with feedback.

Method 1: find differential equation and solve it.

$$
\dot{y}(t)=x(t)+p y(t)
$$

Linear, first-order difference equation with constant coefficients.
$\operatorname{Try} y(t)=C e^{\alpha t} u(t)$.
Then $\dot{y}(t)=\alpha C e^{\alpha t} u(t)+C e^{\alpha t} \delta(t)=\alpha C e^{\alpha t} u(t)+C \delta(t)$.
Substituting, we find that $\alpha C e^{\alpha t} u(t)+C \delta(t)=\delta(t)+p C e^{\alpha t} u(t)$.
Therefore $\alpha=p$ and $C=1 \quad \rightarrow \quad y(t)=e^{p t} u(t)$.

CT Feedback

Find the impulse response of this CT system with feedback.

Method 2: use operators.

$$
\begin{aligned}
& Y=\mathcal{A}(X+p Y) \\
& \frac{Y}{X}=\frac{\mathcal{A}}{1-p \mathcal{A}}
\end{aligned}
$$

Now expand in ascending series in \mathcal{A} :

$$
\frac{Y}{X}=\mathcal{A}\left(1+p \mathcal{A}+p^{2} \mathcal{A}^{2}+p^{3} \mathcal{A}^{3}+\cdots\right)
$$

If $x(t)=\delta(t)$ then

$$
\begin{aligned}
y(t) & =\mathcal{A}\left(1+p \mathcal{A}+p^{2} \mathcal{A}^{2}+p^{3} \mathcal{A}^{3}+\cdots\right) \delta(t) \\
& =\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)=e^{p t} u(t)
\end{aligned}
$$

CT Feedback

We can visualize the feedback by tracing each cycle through the cyclic signal path.

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}+p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}+p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

We can visualize the feedback by tracing each cycle through the cyclic signal path.

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}+p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}+p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

We can visualize the feedback by tracing each cycle through the cyclic signal path.

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}+p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}+p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

We can visualize the feedback by tracing each cycle through the cyclic signal path.

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}+p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}+p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

We can visualize the feedback by tracing each cycle through the cyclic signal path.

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}+p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}+p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)=e^{p t} u(t)
\end{aligned}
$$

CT Feedback

Making p negative makes the output converge (instead of diverge).

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}-p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}-p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1-p t+\frac{1}{2} p^{2} t^{2}-\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

Making p negative makes the output converge (instead of diverge).

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}-p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}-p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1-p t+\frac{1}{2} p^{2} t^{2}-\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

Making p negative makes the output converge (instead of diverge).

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}-p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}-p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1-p t+\frac{1}{2} p^{2} t^{2}-\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

Making p negative makes the output converge (instead of diverge).

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}-p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}-p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1-p t+\frac{1}{2} p^{2} t^{2}-\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

Making p negative makes the output converge (instead of diverge).

$$
\begin{aligned}
y(t) & =\left(\mathcal{A}-p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}-p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
& =\left(1-p t+\frac{1}{2} p^{2} t^{2}-\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)
\end{aligned}
$$

CT Feedback

Making p negative makes the output converge (instead of diverge).

$$
\begin{aligned}
& y(t)=\left(\mathcal{A}-p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}-p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t) \\
&=\left(1-p t+\frac{1}{2} p^{2} t^{2}-\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)=e^{-p t} u(t) \\
& y(t) \\
& 1
\end{aligned}
$$

Convergent and Divergent Poles

The fundamental mode associated with p converges if $p<0$ and diverges if $p>0$.

Convergent and Divergent Poles

The fundamental mode associated with p converges if $p<0$ and diverges if $p>0$.

CT Feedback

In CT, each cycle adds a new integration.

$y(t)=\left(\mathcal{A}+p \mathcal{A}^{2}+p^{2} \mathcal{A}^{3}+p^{3} \mathcal{A}^{4}+\cdots\right) \delta(t)$

$$
=\left(1+p t+\frac{1}{2} p^{2} t^{2}+\frac{1}{6} p^{3} t^{3}+\cdots\right) u(t)=e^{p t} u(t)
$$

DT Feedback

In DT, each cycle creates another sample in the output.

$$
\begin{aligned}
y[n] & =\left(1+p \mathcal{R}+p^{2} \mathcal{R}^{2}+p^{3} \mathcal{R}^{3}+p^{4} \mathcal{R}^{4}+\cdots\right) \delta[n] \\
& =\delta[n]+p \delta[n-1]+p^{2} \delta[n-2]+p^{3} \delta[n-3]+p^{4} \delta[n-4]+\cdots
\end{aligned}
$$

Summary: CT and DT representations

Many similarities and important differences.

$$
\dot{y}(t)=x(t)+p y(t)
$$

$$
y[n]=x[n]+p y[n-1]
$$

Check Yourself

Which functionals represent convergent systems?

$$
\begin{gathered}
\frac{1}{1-\frac{1}{4} \mathcal{R}^{2}} \\
\frac{1}{1+2 \mathcal{R}+\frac{3}{4} \mathcal{R}^{2}}
\end{gathered}
$$

$$
\frac{1}{1-\frac{1}{4} \mathcal{A}^{2}}
$$

$$
\frac{1}{1+2 \mathcal{A}+\frac{3}{4} \mathcal{A}^{2}}
$$

1. $\sqrt{ } \sqrt{x} \times$
2. $\sqrt{ } \times \sqrt{ } \times$
3. $\sqrt{ } \sqrt{ } \sqrt{ }$

4. none of these

Check Yourself

$$
\begin{array}{lll}
\frac{1}{1-\frac{1}{4} \mathcal{R}^{2}}=\frac{1}{\left(1-\frac{1}{2} \mathcal{R}\right)\left(1+\frac{1}{2} \mathcal{R}\right)} & \text { both inside unit circle } & \sqrt{ } \\
\frac{1}{1-\frac{1}{4} \mathcal{A}^{2}}=\frac{1}{\left(1-\frac{1}{2} \mathcal{A}\right)\left(1+\frac{1}{2} \mathcal{A}\right)} & \text { left \& right half-planes } & X \\
\frac{1}{1+2 \mathcal{R}+\frac{3}{4} \mathcal{R}^{2}}=\frac{1}{\left(1+\frac{1}{2} \mathcal{R}\right)\left(1+\frac{3}{2} \mathcal{R}\right)} & \text { inside \& outside unit circle } & X \\
\frac{1}{1+2 \mathcal{A}+\frac{3}{1} \mathcal{A}^{2}}=\frac{1}{\left(1+\frac{1}{2} \mathcal{A}\right)\left(1+\frac{3}{2} \mathcal{A}\right)} & \text { both left half plane } & \sqrt{ }
\end{array}
$$

Check Yourself

Which functionals represent convergent systems? 4

$$
\begin{array}{cc}
\frac{1}{1-\frac{1}{4} \mathcal{R}^{2}} & \frac{1}{1-\frac{1}{4} \mathcal{A}^{2}} \\
\frac{1}{1+2 \mathcal{R}+\frac{3}{4} \mathcal{R}^{2}} & \frac{1}{1+2 \mathcal{A}+\frac{3}{4} \mathcal{A}^{2}}
\end{array}
$$

Mass and Spring System

Use the \mathcal{A} operator to solve the mass and spring system.

$$
F=K(x(t)-y(t))=M \ddot{y}(t)
$$

$$
\frac{Y}{X}=\frac{\frac{K}{M} \mathcal{A}^{2}}{1+\frac{K}{M} \mathcal{A}^{2}}
$$

Mass and Spring System

Factor system functional to find the poles.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{\frac{K}{M} \mathcal{A}^{2}}{1+\frac{K}{M} \mathcal{A}^{2}}=\frac{\frac{K}{M} \mathcal{A}^{2}}{\left(1-p_{0} \mathcal{A}\right)\left(1-p_{1} \mathcal{A}\right)} \\
& 1+\frac{K}{M} \mathcal{A}^{2}=1-\left(p_{0}+p_{1}\right) \mathcal{A}+p_{0} p_{1} \mathcal{A}^{2}
\end{aligned}
$$

The sum of the poles must be zero.
The product of the poles must be K / M.

$$
p_{0}=j \sqrt{\frac{K}{M}} \quad p_{1}=-j \sqrt{\frac{K}{M}}
$$

Mass and Spring System

Alternatively, find the poles by substituting $\mathcal{A} \rightarrow \frac{1}{s}$.
The poles are then the roots of the denominator.

$$
\frac{Y}{X}=\frac{\frac{K}{M} \mathcal{A}^{2}}{1+\frac{K}{M} \mathcal{A}^{2}}
$$

Substitute $\mathcal{A} \rightarrow \frac{1}{s}$:

$$
\begin{aligned}
& \frac{Y}{X}=\frac{\frac{K}{M}}{s^{2}+\frac{K}{M}} \\
& s= \pm j \sqrt{\frac{K}{M}}
\end{aligned}
$$

Mass and Spring System

The poles are complex conjugates.

The corresponding fundamental modes have complex values.
fundamental mode 1: $e^{j \omega_{0} t}=\cos \omega_{0} t+j \sin \omega_{0} t$
fundamental mode 2: $e^{-j \omega_{0} t}=\cos \omega_{0} t-j \sin \omega_{0} t$

Mass and Spring System

Real-valued inputs always excite combinations of these modes so that the imaginary parts cancel.

Example: find the impulse response.

$$
\begin{aligned}
\frac{Y}{X} & =\frac{\frac{K}{M} \mathcal{A}^{2}}{1+\frac{K}{M} \mathcal{A}^{2}}=\frac{\frac{K}{M}}{p_{0}-p_{1}}\left(\frac{\mathcal{A}}{1-p_{0} \mathcal{A}}-\frac{\mathcal{A}}{1-p_{1} \mathcal{A}}\right) \\
& =\frac{\omega_{0}^{2}}{2 j \omega_{0}}\left(\frac{\mathcal{A}}{1-j \omega_{0} \mathcal{A}}-\frac{\mathcal{A}}{1+j \omega_{0} \mathcal{A}}\right) \\
& =\frac{\omega_{0}}{2 j} \underbrace{\left(\frac{\mathcal{A}}{1-j \omega_{0} \mathcal{A}}\right)}_{\text {makes mode } 1}-\frac{\omega_{0}}{2 j} \underbrace{\left(\frac{\mathcal{A}}{1+j \omega_{0} \mathcal{A}}\right)}_{\text {makes mode } 2}
\end{aligned}
$$

The modes themselves are complex conjugates, and their coefficients are also complex conjugates. So the sum is a sum of something and its complex conjugate, which is real.

Mass and Spring System

The impulse response is therefore real.

$$
\frac{Y}{X}=\frac{\omega_{0}}{2 j}\left(\frac{\mathcal{A}}{1-j \omega_{0} \mathcal{A}}\right)-\frac{\omega_{0}}{2 j}\left(\frac{\mathcal{A}}{1+j \omega_{0} \mathcal{A}}\right)
$$

The impulse response is

$$
h(t)=\frac{\omega_{0}}{2 j} e^{j \omega_{0} t}-\frac{\omega_{0}}{2 j} e^{-j \omega_{0} t}=\omega_{0} \sin \omega_{0} t ; \quad t>0
$$

Mass and Spring System

Alternatively, find impulse response by expanding system functional.

If $x(t)=\delta(t)$ then

$$
y(t)=\omega_{0}^{2} t-\omega_{0}^{4} \frac{t^{3}}{3!}+\omega_{0}^{6} \frac{t^{5}}{5!}-+\cdots, t \geq 0
$$

Mass and Spring System

Look at successive approximations to this infinite series.

$$
\frac{Y}{X}=\frac{\omega_{0}^{2} \mathcal{A}^{2}}{1+\omega_{0}^{2} \mathcal{A}^{2}}=\omega_{0}^{2} \mathcal{A}^{2} \sum_{l=0}^{\infty}\left(-\omega_{0}^{2} \mathcal{A}^{2}\right)^{l}
$$

If $x(t)=\delta(t)$ then

$$
\begin{aligned}
y(t) & =\sum_{l=0}^{\infty} \omega_{0}^{2}\left(-\omega_{0}^{2}\right)^{l} \mathcal{A}^{2 l+2} \delta(t) \\
& =\omega_{0}^{2} t-\omega_{0}^{4} \frac{t^{3}}{3!}+\omega_{0}^{6} \frac{t^{5}}{5!}-\omega_{0}^{8} \frac{t^{7}}{7!}+\omega_{0}^{10} \frac{t^{9}}{9!}-+\cdots=\omega_{0} \sin \omega_{0} t \\
& =0, t(t)
\end{aligned}
$$

Summary: CT and DT representations

Many similarities and important differences.

$$
\dot{y}(t)=x(t)+p y(t)
$$

$$
y[n]=x[n]+p y[n-1]
$$

$$
\begin{aligned}
& \frac{\mathcal{A}}{1-p \mathcal{A}} \\
& e^{p t} u(t)
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

