6.003: Signals and Systems

Signals and Systems

6.003: Signals and Systems

Today's handouts: Single package containing

Slides for Lecture 1

Subject Information & Calendar

Lecturer: Denny Freeman

Instructors: Elfar Adalsteinsson

Russ Tedrake

TAs: Phillip Nadeau

Wenbang Xu

Website: mit.edu/6.003

Text: Signals and Systems – Oppenheim and Willsky

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours!

- Stata Basement
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- Discussion of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

Firm Deadlines

- Homework must be submitted by the published due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

6.003 At-A-Glance

	Tuesday Wednesday		esday	Thursday	Friday
Sep 6	Registration Day:		R1: Continuous &	L1: Signals and	R2: Difference
	No Classes		Discrete Systems	Systems	Equations
Sep 13	L2: Discrete-Time	HW1	R3: Feedback,	L3: Feedback,	R4: CT Systems
	Systems	due	Cycles, and Modes	Cycles, and Modes	
Sep 20	L4: CT Operator	HW2	Student Holiday:	L5: Laplace	R5: Laplace
	Representations	due	No Recitation	Transforms	Transforms
Sep 27	L6: Z Transforms	HW3 due	R6: Z Transforms	L7: Transform	R7: Transform
				Properties	Properties
Oct 4	L8: Convolution;	EX4	Exam 1	L9: Frequency	R8: Convolution
	Impulse Response	E^4	No Recitation	Response	and Freq. Resp.
Oct 11	Columbus Day: No Lecture	HW5 due	R9: Bode Diagrams	L10: Bode	R10: Feedback and
				Diagrams	Control
Oct 18	L11: DT Feedback	HW6	R11: CT Feedback	L12: CT Feedback	R12: CT Feedback
	and Control	due	and Control	and Control	and Control
Oct 25	L13: CT Feedback	HW7	Exam 2	L14: CT Fourier	R13: CT Fourier
	and Control		No Recitation	Series	Series
Nov 1	L15: CT Fourier	EX8	R14: CT Fourier	L16: CT Fourier	R15: CT Fourier
	Series	due	Series	Transform	Transform
Nov 8	L17: CT Fourier	HW9	R16: DT Fourier	L18: DT Fourier	Veterans Day:
	Transform	due	Transform	Transform	No Recitation
Nov 15	L19: DT Fourier Transform	HW10	Exam 3	L20: Fourier	R17: Fourier
		HVVIO	No Recitation	Relations	Relations
Nov 22	L21: Sampling	EX11	R18: Fourier	Thanksgiving:	Thanksgiving:
		due	Transforms	No Lecture	No-Recitation
Nov 29	L22: Sampling	HW12 due	R19: Modulation	L23: Modulation	R20: Modulation
of 6.003	Stady I chod				
Dec 13	Breakfast with	FX13	R22: Review	Study Period:	Final Exams:
	Staff		1122. 11011000	No Lecture	No-Recitation
Dec 20	pec 20 Final Examinations: No Classes				

6.003: Signals and Systems

Weekly meetings with class representatives

- help staff understand student perspective
- learn about teaching

Tentatively meet on Thursday afternoon

Interested? ...

The Signals and Systems Abstraction

Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.

Example: Mass and Spring

Example: Tanks

Example: Cell Phone System

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

Signals and Systems: Modular

The representation does not depend upon the physical substrate.

focuses on the flow of information, abstracts away everything else

12

Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems

Composite system

Component and composite systems have the same form, and are analyzed with same methods.

Signals are mathematical functions.

- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

continuous "time" (CT) and discrete "time" (DT)

Signals from physical systems often functions of **continuous** time.

- mass and spring
- leaky tank

Signals from computation systems often functions of **discrete** time.

• state machines: given the current input and current state, what is the next output and next state.

Sampling: converting CT signals to DT

T =sampling interval

Important for computational manipulation of physical data.

- digital representations of audio signals (e.g., MP3)
- digital representations of images (e.g., JPEG)

Reconstruction: converting DT signals to CT

zero-order hold

T =sampling interval

commonly used in audio output devices such as CD players

Reconstruction: converting DT signals to CT

piecewise linear

T =sampling interval

commonly used in rendering images

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

How many of the following relations are true?

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = \frac{1}{3}f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

How many of the following relations are true? 2

•
$$f_1(t) = f(2t)$$
 \checkmark

$$\bullet \quad f_2(t) = -f(t) \quad \times$$

$$\bullet \quad f_4(t) = \frac{1}{3}f(t) \quad \checkmark$$

How many images match the expressions beneath them?

$$x = 0$$
 $\rightarrow f_1(0, y) = f(0, y)$ \checkmark
 $x = 250$ $\rightarrow f_1(250, y) = f(500, y)$ \times
 $x = 0$ $\rightarrow f_2(0, y) = f(-250, y)$ \checkmark
 $x = 250$ $\rightarrow f_2(250, y) = f(250, y)$ \checkmark
 $x = 0$ $\rightarrow f_3(0, y) = f(-250, y)$ \times
 $x = 250$ $\rightarrow f_3(250, y) = f(-500, y)$ \times

How many images match the expressions beneath them?

The Signals and Systems Abstraction

Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.

Example System: Leaky Tank

Formulate a mathematical description of this system.

What determines the leak rate?

The holes in each of the following tanks have equal size. Which tank has the largest leak rate $r_1(t)$? 1. 3. 4.

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking: $r_1(t) \propto h_1(t)$

What determines the height $h_1(t)$?

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking:
$$r_1(t) \propto h_1(t)$$

Assume water is conserved:
$$\frac{dh_1(t)}{dt} \propto r_0(t) - r_1(t)$$

Solve:
$$\frac{dr_1(t)}{dt} \propto r_0(t) - r_1(t)$$

What are the dimensions of constant of proportionality C?

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$

What are the dimensions of constant of proportionality C? inverse time (to match dimensions of dt)

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Assume that the tank is initially empty, and then water enters at a constant rate $r_0(t)=1$. Determine the output rate $r_1(t)$.

Explain the shape of this curve mathematically.

Explain the shape of this curve physically.

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

$$\frac{dv}{dt} = \frac{i_i - i_o}{C} \propto i_i - i_o$$
 analogous to $\frac{dh}{dt} \propto r_0 - r_0$

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.