Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Electronic Circuits Spring 2007 Homework #6 Handout - S07-030

Issued 3/15/2007 - Due 3/23/2007

Reading: Section 7.7, and Sections 8.1-8.2 of A+L. Review Section 4.5

Exercise 6.1. Do Exercise 8.1 from A+L Chapter 8 (page 447).

Exercise 6.2. Consider a two-terminal device formed by a MOSFET with its gate tied to its drain. The MOSFET is characterized by parameters V_T and K, and its drain-to-source voltage and drain current are denoted as v_R and i_R , respectively.

a. Write the v_R - i_R relation for this device operating under the saturation discipline (i.e. for $v_R \ge V_T$).

b. Develop a small-signal model for this device about a dc operating point $v_R = V_R$, describing the relationship between v_r and i_r .

Problem 6.1. Do Problem 7.5 from A+L Chapter 7 (pages 396-397) with the following changes:

- For part **a**., show that v_{OUT} is related to v_{IN} according to $v_{OUT}^2 2(v_{IN} V_T + \frac{1}{RK})v_{OUT} + (v_{IN} V_T)^2 = 0$ instead of the equation listed in the book.
- For part **b**., only find the range for v_{IN} . Do not find the corresponding range for v_{OUT} . You should be able to do this without having to solve any quadratic equations.

Problem 6.2. Do Problem 7.10 from A+L Chapter 7 (page 399).

(Problem 6.3 on back)

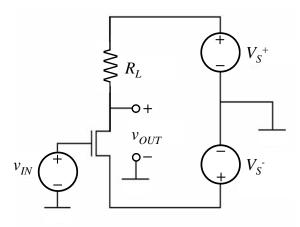


Figure 1: Amplifier Dual power supplies layout.

Problem 6.3. In many amplifiers we use dual power supplies so we can obtain a 0 V offset at the output. An example is shown in Fig. 1.

For this problem, use $V_S^+ = +1.5$ V, $V_S^- = -1.5$ V, and MOSFET parameters K = 1 mA/V² and $V_T = 0.5$ V. Then:

a. Find the value of R_L such that $v_{OUT} = 0$ V when $v_{IN} = 0$ V.

b. As v_{IN} is increased, the output voltage v_{OUT} decreases. For the value of R_L found in part **a**., find the minimum output voltage v_{OUT} such that the MOSFET will obey the saturation discipline.