Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits Spring 2007

> Homework #5 Handout F07-028

Issued 3/8/2007 - Due 3/16/2007

Helpful Readings for this Homework: Agarwal & Lang Chapter 7.1 - 7.6 **Exercise 5.1:** Do Exercise 7.1 in Agarwal & Lang, page 390.

Exercise 5.2: Do Exercise 7.3 in Agarwal & Lang, page 391.

Problem 5.1: Determine the Thevenin equivalent of the following circuit. Note that it contains a dependent voltage source, and that the parameter α has units of Ohms.

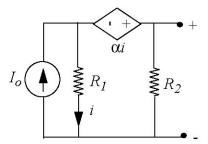


Figure for Problem 5.1

Problem 5.2: This problem studies the two amplifiers shown on the other side of the page. Amplifier A is a single-stage amplifier implemented with a voltage-dependent current source and a pull-up resistor. Assume that the current source parameters G and V_T satisfy G > 0 and $V_S > V_T > 0$. Also assume that $RG < \frac{V_S}{V_S - V_T}$. Amplifier B is a two-stage amplifier in which each stage is identical to Amplifier A.

- (A) Determine v_{OUT} as a function of v_{IN} for Amplifier A.
- (B) Sketch and clearly label a graph of the input-output relation found in Part (A).
- (C) Determine v_{OUT} as a function of v_{IN} for Amplifier B.
- (D) Sketch and clearly label a graph of the input-output relation found in Part (C).
- (E) Consider Amplifier A again. Show that the dependent current source sinks power for $v_{\text{OUT}} > 0$ and sources power for $v_{\text{OUT}} < 0$.
- (F) Unlike the expression for the current in Amplifier A given with the figure on the next page, real-world devices do not supply additional current when $\nu_{\text{OUT}} < 0$. Instead the device saturates and the dependent current source supplies a constant current, given by V_s/R . Redo parts (A) and (B) in light of this fact. What change (if any) occurs in the input-output relation of Amplifier B?

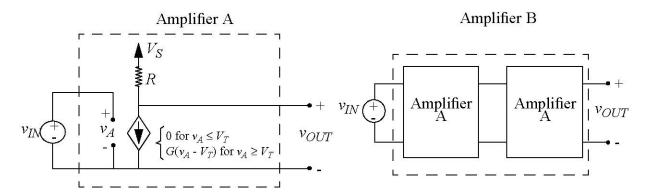


Figure for P.5.2.