Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Circuits & Electronics Spring 2007 Homework #3 Handout S07-019

Issued 2/22/07 - Due 3/2/07

Reading: Chapter 5, Chapter 6.1-6.10.

Exercise 3.1. The number of Boolean functions of one variable (*A*) is four (F_1 , F_2 , F_3 , and F_4), as it can be learned from the truth table given in Table 1. Then:

a. How many different Boolean functions are there of 2 variables, and of 3 variables?

b. How many different Boolean functions are there of *n* variables?

Α	F_1	F_2	F_3	F_4
0	0	0	1	1
1	0	1	0	1

Table 1: Truth table for the different Boolean Functions of one variable.

Exercise 3.2. Do Exercise 5.6, page 275 of the textbook, parts *a*, *b*, and *d*.

Exercise 3.3. Do Exercise 6.2, page 322 of the textbook.

Problem 3.1. Do Problem 5.2, page 278 of the textbook.

Figure 1: Input/Output transfer characteristic for inverter of Problem 3.2.

Problem 3.2. An inverter has the input/output transfer characteristic shown in Fig. 1. This inverter obeys the static discipline for suitable choices of the voltages V_{OL} , V_{IL} , V_{IH} , and V_{OH} , (see Fig. 5.8 on page 250 of the textbook), and those are such that $NM_H = NM_L$. Then:

a. Give values of V_{OL} , V_{IL} , V_{IH} , and V_{OH} that actually achieve the static discipline with the maximum positive noise margin.

b. What is the noise margin you obtained?

Problem 3.3 For this problem, consider the convention that a logical one corresponds to a high voltage level and a logical zero corresponds to a low voltage level. Thus, when the voltage v_A associated with the Boolean variable A is high (3V), A = 1. When v_A is low ($\approx 0V$), A = 0. The same relation holds with v_B and B, v_C and C. Assume also the following:

- The high voltage level is much greater than the threshold voltage.
- The "on" resistance of the MOSFET is 100Ω .
- The "off" resistance of the MOSFET is $100M\Omega$.

Then, for *each* circuit in Fig. 2:

a. Generate a truth table which shows how the variable *C* (associated with v_C) depends on the inputs A (associated with v_A) and *B* (associated with v_B).

b. For each particular entry of *C* in the corresponding truth table of part **a**., find the value of the output voltage v_c .

Figure 2: Circuits for Problem 3.3.