Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 - Circuits \& Electronics
Spring 2007
Homework \#3
Handout S07-019

Issued 2/22/07 - Due 3/2/07

Reading: Chapter 5, Chapter 6.1-6.10.
Exercise 3.1. The number of Boolean functions of one variable (A) is four (F_{1}, F_{2}, F_{3}, and F_{4}), as it can be learned from the truth table given in Table 1. Then:
a. How many different Boolean functions are there of 2 variables, and of 3 variables?
b. How many different Boolean functions are there of n variables?

A	F_{1}	F_{2}	F_{3}	F_{4}
0	0	0	1	1
1	0	1	0	1

Table 1: Truth table for the different Boolean Functions of one variable.
Exercise 3.2. Do Exercise 5.6, page 275 of the textbook, parts a, b, and d.
Exercise 3.3. Do Exercise 6.2, page 322 of the textbook.
Problem 3.1. Do Problem 5.2, page 278 of the textbook.

Figure 1: Input/Output transfer characteristic for inverter of Problem 3.2.

Problem 3.2. An inverter has the input/output transfer characteristic shown in Fig. 1. This inverter obeys the static discipline for suitable choices of the voltages $V_{O L}, V_{I L}, V_{I H}$, and $V_{O H}$, (see Fig. 5.8 on page 250 of the textbook), and those are such that $N M_{H}=N M_{L}$. Then:
a. Give values of $V_{O L}, V_{I L}, V_{I H}$, and $V_{O H}$ that actually achieve the static discipline with the maximum positive noise margin.
b. What is the noise margin you obtained?

Problem 3.3 For this problem, consider the convention that a logical one corresponds to a high voltage level and a logical zero corresponds to a low voltage level. Thus, when the voltage v_{A} associated with the Boolean variable A is high (3V), $A=1$. When v_{A} is low $(\approx 0 V), A=0$. The same relation holds with v_{B} and B, v_{C} and C. Assume also the following:

- The high voltage level is much greater than the threshold voltage.
- The "on" resistance of the MOSFET is 100Ω.
- The "off" resistance of the MOSFET is $100 \mathrm{M} \Omega$.

Then, for each circuit in Fig. 2:
a. Generate a truth table which shows how the variable C (associated with v_{C}) depends on the inputs A (associated with v_{A}) and B (associated with v_{B}).
b. For each particular entry of C in the corresponding truth table of part a., find the value of the output voltage v_{c}.

Figure 2: Circuits for Problem 3.3.

