Graph-theoretic Models

Eric Grimson

MIT Department Of Electrical Engineering and
Computer Science

6.0002 LECTURE 3

Relevant Reading for Today’s Lecture

=sSection 12.2

6.0002 LECTURE 3 2

Computational Models

"Programs that help us understand the world and solve
practical problems

=Saw how we could map the informal problem of
choosing what to eat into an optimization problem,
and how we could design a program to solve it

*Now want to look at class of models called graphs

6.0002 LECTURE 3 3

What's a Graph?

=Set of nodes (vertices)
o Might have properties associated with them

=Set of edges (arcs) each consisting of a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes
o Unweighted or weighted

6.0002 LECTURE 3 4

What's a Graph?

=Set of nodes (vertices)
o Might have properties associated with them

=Set of edges (arcs) each consisting of a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes
o Unweighted or weighted

6.0002 LECTURE 3 5

Why Graphs?

*To capture useful relationships among entities
o Rail links between Paris and London

c How the atoms in @ molecule are related to one another
o Ancestral relationships

6.0002 LECTURE 3 6

Trees: An Important Special Case

= A special kind of directed graph in which any pair of
nodes is connected by a single path

o Recall the search trees we used to solve knapsack
problem

6.0002 LECTURE 3 7

Why Graphs Are So Useful

*World is full of networks based on relationships
o Computer networks

o Transportation networks o v @is
o Financial networks waiphess | R
@ MUP@]NS BAF@TER
o Sewer or water networks Y
o Political networks sl T\ (i

o Criminal networks
o Social networks

o Etc.

Analysis of “Wizard of Oz”:
- size of node reflects number of scenes
in which character shares dialogue
- color of clusters reflects natural
Interactions Wlth eaCh Other bUt not Wizard of Oz dialogue map © Mapr.com.xll rights reserved. This content is

Others excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq—fair—use.

6.0002 LECTURE 3 8

https://ocw.mit.edu/help/faq-fair-use

Why Graphs Are So Useful

*"\We will see that not only do graphs capture
relationships in connected networks of elements, they
also support inference on those structures
> Finding sequences of links between elements —is there a
path from Ato B

o Finding the least expensive path between elements (aka
shortest path problem)

o Partitioning the graph into sets of connected elements
(aka graph partition problem)

o Finding the most efficient way to separate sets of
connected elements (aka the min-cut/max-flow problem)

6.0002 LECTURE 3 9

Graph Theory Saves Me Time Every Day

Boston Logai
International Air

s g (s 0
— -‘—- o — 3 ‘.‘;’.‘_\ : KOS (> r! 1*"3
T \"; ﬂ'y‘"i’ .—.T'_‘--"“ (' » ‘,IF . 4 ‘I,~l - ¢
=% W /,, 41} FOLadwiaes o
/ 7 AV \ / . a; (f & = . - S : »

Map image © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see |https://ocw.mit.edu/help/faq-fair-use.

6.0002 LECTURE 3 10

https://ocw.mit.edu/help/faq-fair-use

Getting Eric to his Office

=" Model road system using a digraph
> Nodes: points where roads end or meet

o Edges: connections between points
o Each edge has a weight

o Expected time to get from source node to destination node for that edge

o Distance between source and destination nodes
o Average speed of travel between source and destination nodes

=Solve a graph optimization problem
o Shortest weighted path between my house and my office

6.0002 LECTURE 3

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use

First Reported Use of Graph Theory

"Bridges of
Konigsberg
(1735)

=Possible to take
a walk that
traverses each of
the 7 bridges
exactly once?

H?- e

Map image © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see|https://ocw.mit.edu/help/fag-fair-use.

6.0002 LECTURE 3 12

https://ocw.mit.edu/help/faq-fair-use

Leonhard Euler’s Model

=Each island a node

"Each bridge an undirected edge

" Model abstracts away irrelevant details
o Size of islands

o Length of bridges

"|s there a path that contains each edge exactly once?
> No!

6.0002 LECTURE 3 13

Implementing and using graphs

"Building graphs
°c Nodes
o Edges
o Stitching together to make graphs

=Using graphs
o Searching for paths between nodes
o Searching for optimal paths between nodes

6.0002 LECTURE 3

14

Class Node

class Node(object):

def __init__(self, name):
"""Assumes name 1s a string
self.name = name

def getName(self):
return self.name

def _str__(self):
return self.name

6.0002 LECTURE 3

15

Class Edge

class Edge(object):

def _init__(self, src, dest):
"""Assumes src and dest are nodes
self.src = src
self.dest = dest

def getSource(self):
return self.src

def getDestination(self):
return self.dest

def _str__(self):
return self.src.getName() + '->"\

+ self.dest.getName()

6.0002 LECTURE 3

16

Common Representations of Digraphs

"Digraph is a directed graph
o Edges pass in one direction only

sAdjacency matrix
> Rows: source nodes

o Columns: destination nodes
o Cell[s, d] = 1 if there is an edge from s to d
= 0 otherwise
o Note that in digraph, matrix is not symmetric

sAdjacency list
o Associate with each node a list of destination nodes

6.0002 LECTURE 3

17

Class Digraph, part 1

class Digraph(object):
edges i1s a dict|mapping each nodefto a| list|of

1ts

def

def

def

children""”
25
_init__(selfN: o
self.edges = {} @y
3 S 3(§\C(\0(\6
addNode(self, node): $@\ﬁ«\
if node in self.edges: A
raise ValueError('Duplicate node')
W
e-l Sse. e(\‘ed . (\\'\S"
self.edges[node] = [] (e@e"@\\)es\(ce\@“
3(6 0 50\)
addEdge(self, edge): W8 O
src = edge.getSource() 3% ®
dest = edge.getDestination() 5

if not (src in self.edges and dest in self.edges):
raise ValueError('Node not in graph')
self.edges[src].append(dest)

6.0002 LECTURE 3 18

Class Digraph, part 2

def childrenOf(self, node):
return self.edges[node]

def hasNode(self, node):
return node in self.edges

def getNode(self, name):
for n 1n self.edges:
1f n.getName() == name:
return n
raise NameError(name)

def _str__(self):
result = "'
for src in self.edges:
for dest in self.edges[src]:
result = result + src.getName() + '->"\
+ dest.getName() + '"\n'
return result[:-1] #omit final newline

6.0002 LECTURE 3 19

Class Graph

class Graph(Digraph):
def addEdge(self, edge):
Digraph.addEdge(self, edge)
rev = Edge(edge.getDestination(), edge.getSource())
Digraph.addEdge(self, rev)

="Graph does not have directionality associated with an edge
o Edges allow passage in either direction

"\Why is Graph a subclass of Digraph?

"Remember the substitution rule?

o If client code works correctly using an instance of the
supertype, it should also work correctly when an instance of
the subtype is substituted for the instance of the supertype

"Any program that works with a Digraph will also work with
a Graph (but not vice versa)

6.0002 LECTURE 3 20

A Classic Graph Optimization Problem

sShortest path from nl to n2

o Shortest sequence of edges such that
o Source node of first edge is n1
o Destination of last edge is n2

o For edges, el and e2, in the sequence, if e2 follows el in the
sequence, the source of e2 is the destination of el

sShortest weighted path
° Minimize the sum of the weights of the edges in the path

6.0002 LECTURE 3 21

Some Shortest Path Problems

"Finding a route from one city to another
=Designing communication networks

*"Finding a path for a molecule through a chemical
labyrinth

-q
‘ e

s
L\ &
1T g

(A
\ |

¢

&
1{Z
sy

"W

-
\ |

« -

-
Wy

-

N [

\J

3
' Y

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

6.0002 LECTURE 3 22

https://ocw.mit.edu/help/faq-fair-use

An Example

/

. Chicago)
Adjacency List

Boston: Providence, New York o~

Providence: Boston, New York @

New York: Chicago

Chicago: Denver, Phoenix

Denver: Phoenix, New York

Los Angeles: Boston
Phoenix:

6.0002 LECTURE 3

Los Angeles

23

Build the Graph

def buildCityGraph(graphType):

g = graphType()

for name in ('Boston', 'Providence', 'New York', 'Chicago',
'Denver', 'Phoenix', 'Los Angeles'): #Create 7 nodes
g.addNode (Node (name))

QOO uouuouuuuuue

.addEdge(Edge(g.
.addEdge (Edge(qg.
.addEdge (Edge(qg.
.addEdge (Edge(qg.
.addEdge(Edge(g.
.addEdge(Edge(g.
.addEdge(Edge(g.
.addEdge (Edge(qg.
.addEdge (Edge(qg.
.addEdge (Edge(qg.

getNode('Boston'), g.getNode('Providence')))
getNode('Boston'), g.getNode('New York')))
getNode('Providence'), g.getNode('Boston')))
getNode('Providence'), g.getNode('New York')))
getNode('New York'), g.getNode('Chicago')))
getNode('Chicago'), g.getNode('Denver')))
getNode('Chicago'), g.getNode('Phoenix"')))
getNode('Denver'), g.getNode('Phoenix"')))
getNode('Denver'), g.getNode(’'New York')))
getNode('Los Angeles'), g.getNode('Boston')))

6.0002 LECTURE 3 24

Finding the Shortest Path

"Algorithm 1, depth-first search (DFS)

sSimilar to left-first depth-first method of enumerating
a search tree (Lecture 2)

*Main difference is that graph might have cycles, so we
must keep track of what nodes we have visited to avoid

going in infinite loops

Note that we are using divide-and-conquer: if we can find a path
from a source to an intermediate node, and a path from the
intermediate node to the destination, the combination is a path

from source to destination

6.0002 LECTURE 3 25

Depth First Search

=Start at an initial node

=Consider all the edges that leave that node, in some
order

"Follow the first edge, and check to see if at goal node
"|f not, repeat the process from new node

=Continue until either find goal node, or run out of
options
> When run out of options, backtrack to the previous node
and try the next edge, repeating this process

6.0002 LECTURE 3 26

Depth First Search (DFS)

.\(\&‘(\e
. \¥
def DFS(graph, start, end, path, shortest, toPrint = False):) Qﬂﬁ“ ae
path = path + [start] ‘Ox‘(\\c’ *&(\0
if toPrint: («d% X 1\ “ﬁe
print('Current DFS path:', printPath(path)) (éoﬁ,doxo \eﬁ9g«§,

if start;;;jifE__—_—_—_—_—_——______________————'"63§9‘ CNyN“Oggo
return path < AN
for node graph.childrenOf(start): WNO™_x® oft® "
if node not in path: #avoid cycles aer
if shortest == None or 1en(ggzhlfg,lenfsh6FfE§E§?” I\
newPath = DFS(graph, node, end, path, shortest, toPrint)
if newPath != None:

shortest = newPath
elif toPrint:

print('Already visited', node)
return shortest

def shortestPath(graph, start, end, toPrint = False):
return DFS(graph, start, end, [], None, toPrint)

DFS called from a Gets recursion started properly
wrapper function: . . .
shortestPath Provides appropriate abstraction

6.0002 LECTURE 3 27

Test DFS

def testSP(source, destination):
g = buildCityGraph(DiGraph)
sp = shortestPath(g, g.getNode(source), g.getNode(destination)
toPrint = True)

if sp != None:
print('Shortest path from', source, 'to',

destination, 'is', printPath(sp))
else:

print('There is no path from', source, 'to', destination)

testSP('Boston', 'Chicago')

6.0002 LECTURE 3 28

An Example

vidence

M-

ago ‘

Adjacency List

Qe vor)

Boston: Providence, New York /-
Providence: Boston, New York @

New York: Chicago
Chicago: Denver, Phoenix
Denver: Phoenix, New York
Los Angeles: Boston
Phoenix:

6.0002 LECTURE 3

;

er

Los Angeles

29

Output (Chicago to Boston)

OSt

(New Yor)

o)

Current DFS path: Chicago

Current DFS path: Chicago->Denver @

Current DFS path: Chicago->Denver->Phoenix

Los Angeles
Current DFS path: Chicago->Denver->New York

Already visited Chicago
Current DFS path: Chicago->Phoenix

There is no path from Chicago to Boston

6.0002 LECTURE 3 30

Output (Boston to Phoenix)

Current DFS path: Boston

Current DFS path: Boston->Providence

Already visited Boston

Current DFS path: Boston->Providence->New York

Current DFS path: Boston->Providence->New York->Chicago

Current DFS path: Boston->Providence->New York->Chicago->Denver

Current DFS path: Boston->Providence->New York->Chicago->Denver->Phoenix Found path
Already visited New York

Current DFS path: Boston->Providence->New York->Chicago->Phoenix Found a shorter path
Current DFS path: Boston->New York

Current DFS path: Boston->New York->Chicago

Current DFS path: Boston->New York->Chicago->Denver

Current DFS path: Boston->New York->Chicago->Denver->Phoenix Found a “shorter” path
Already visited New York

Current DFS path: Boston->New York->Chicago->Phoenix Found a shorter path

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Denver->Phoenix

6.0002 LECTURE 3

31

Breadth First Search

=Start at an initial node

=Consider all the edges that leave that node, in some
order

"Follow the first edge, and check to see if at goal node
5|f not, try the next edge from the current node

=Continue until either find goal node, or run out of
options
> When run out of edge options, move to next node at
same distance from start, and repeat

> When run out of node options, move to next level in the
graph (all nodes one step further from start), and repeat

6.0002 LECTURE 3

32

Algorithm 2: Breadth-first Search (BFS)

def BFS(graph, start, end, toPrint = False):
initPath = [start]
pathQueue = [initPath]
while Ten(pathQueue) !'= O:
#Get and remove oldest element 1n pathQueue
tmpPath = pathQueue.pop(0)
1f toPrint:
print('Current BFS path:', printPath(tmpPath))
lastNode = tmpPath[-1]
1f lastNode == end: P,
return tmpPath < :
for nextNode 1in graph.childrenOf(lastNode):
1f nextNode not in tmpPath:
newPath = tmpPath + [nextNode]

pathQueue.append(newPath)
return None

Explore all paths with n hops before
exploring any path with more than n hops

6.0002 LECTURE 3 33

Output (Boston to Phoenix)

Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix

Boston

Boston->Providence

Boston->New York
Boston->Providence->New York
Boston->New York->Chicago
Boston->Providence->New York->Chicago
Boston->New York->Chicago->Denver

Boston->New York->Chicago->Phoenix

6.0002 LECTURE 3

34

Output (Boston to Pheonix)

node

Note that we A

skip a path -

that revisits a f
Pro

&

Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:

Qe vord

Boston /

Boston->Providence

Boston->New York / S
Boston->Providence->New York @
Boston->New York->Chicago ”
Boston->Providence->New York->Chicago

Boston->New York->Chicago->Denver

Boston->New York->Chicago->Phoenix

er

Los Angeles

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix

6.0002 LECTURE 3

35

What About a Weighted Shortest Path

="\Want to minimize the sum of the weights of the edges,
not the number of edges

*DFS can be easily modified to do this

"BFS cannot, since shortest weighted path may have
more than the minimum number of hops

6.0002 LECTURE 3 36

Recap

=Graphs are cool
o Best way to create a model of many things

o Capture relationships among objects

> Many important problems can be posed as graph
optimization problems we already know how to solve

=Depth-first and breadth-first search are important
algorithms

o Can be used to solve many problems

6.0002 LECTURE 3

37

IT OpenCourseWare
ttps://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: |https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

