
6.0002 Problem Set 1: Space Cows Transportation

Handed out: Monday, October 24, 2016

Due: 11:59pm, Monday, October 31, 2016

Introduction
A colony of Aucks (super-intelligent alien bioengineers) has landed on Earth and has created
new species of farm animals! The Aucks are performing their experiments on Earth, and plan on
transporting the mutant animals back to their home planet of Aurock. In this problem set, you
will implement algorithms to figure out how the aliens should shuttle their experimental animals
back across space.

Getting Started
Download ps1.zip from the website.

Please do not rename the files we provide you with, change any of the provided helper
functions, change function/method names, or delete provided docstrings. You will need to keep
ps1_partition.py, ps1_cow_data.txt,and ps1_cow_data_2.txt in the same folder
as ps1a.py and ps1b.py.

Also, please consult the Style Guide as we will be taking point deductions for specific
violations (e.g. non-descriptive variable names and uncommented code).

Part A: Transporting Cows Across Space
The aliens have succeeded in breeding cows that jump over the moon! Now they want to take
home their mutant cows. The aliens want to take all chosen cows back, but their spaceship has
a weight limit and they want to minimize the number of trips they have to take across the
universe. Somehow, the aliens have developed breeding technology to make cows with only
integer weights.

The data for the cows to be transported is stored in ps1_cow_data.txt, and another set of cows
for another separate transport are in ps1_cow_data_2.txt (There are two files for you to read
from and test individually). All of your code for Part A should go into ps1a.py.

Problem A.1: Loading Cow Data

First we need to load the cow data from the data file ps1_cow_data.txt.

1

The file ps1_cow_data_2.txt is given as another file that you can read and test from (We also
encourage you to write your own cow list files for testing!), but for now, just work with
ps1_cow_data.txt

You can expect the data to be formatted in pairs of x,y on each line, where x is the name of the
cow and y is a number indicating how much the cow weighs in tons. Here are the first few lines
of ps1_cow_data.txt:
Maggie,3
Herman,7
Betsy,9
…

You can assume that all the cows have unique names.
Implement the function load_cows(filename) in ps1a.py. It should take in the name of the
data text file as a string, read in its contents, and return a dictionary that maps cow names to
their weights.

Hint: If you don’t remember how to read lines from a file, check out the online python
documentation, which has a chapter on Input and Output that includes file I/O here:
https://docs.python.org/3/tutorial/inputoutput.html

Some functions that may be helpful:
str.split
open
file.readline
file.close

Problem A.2: Greedy Cow Transport
One way of transporting cows is to always pick the heaviest cow that will fit onto the spaceship
first. This is an example of a greedy algorithm. So if there’s only 2 tons of free space on your
spaceship, with one cow that’s 3 tons and another that’s 1 ton, the 1 ton cow will still get put
onto the spaceship.

Implement a greedy algorithm for transporting the cows back across space in
greedy_cow_transport. The result should be a list of lists, where each inner list represents
a trip and contains the names of cows taken on that trip.

Note:

- Make sure not to mutate the dictionary of cows that is passed in!

Assumptions:

2

https://docs.python.org/3/tutorial/inputoutput.html

- The order of the list of trips does not matter. That is, [[1,2],[3,4]] and [[3,4],[1,2]] are
considered equivalent lists of trips.

- All the cows are between 0 and 10 tons in weight
- All the cows have unique names
- If multiple cows weigh the same amount, break ties arbitrarily
- The spaceship has a cargo weight limit (in tons), which is passed into the function as a

parameter

Example:
Suppose the spaceship has a weight limit of 10 tons and the set of cows to transport is {“Jesse”:
6, “Maybel”: 3, “Callie”: 2, “Maggie”: 5}.

The greedy algorithm will first pick Jesse as the heaviest cow for the first trip. There is still
space for 4 tons on the trip. Since Maggie will not fit on this trip, the greedy algorithm picks
Maybel, the heaviest cow that will still fit. Now there is only 1 ton of space left, and none of the
cows can fit in that space, so the first trip is [“Jesse”, “Maybel”].

For the second trip, the greedy algorithm first picks Maggie as the heaviest remaining cow, and
then picks Callie as the last cow. Since they will both fit, this makes the second trip [“Maggie”,
“Callie”].

The final result then is [[“Jesse”, “Maybel”], [“Maggie”, “Callie”]].

Problem A.3: Brute Force Cow Transport
Another way to transport the cows is to look at every possible combination of trips and pick the
best one. This is an example of a brute force algorithm.

Implement a brute force algorithm to find the minimum number of trips needed to take all the
cows across the universe in brute_force_cow_transport. The result should be a list of
lists, where each inner list represents a trip and contains the names of cows taken on that trip.

Notes:

- Make sure not to mutate the dictionary of cows!

- In order to enumerate all possible combinations of trips, you will want to work with set
partitions. We have provided you with a helper function called get_partitions that
generates all the set partitions for a set of cows. More details on this function are
provided below.

Assumptions:

- Again, you can assume that order doesn't matter. [[1,2],[3,4]] and [[3,4],[1,2]] are
considered equivalent lists of trips, and [[1,2],[3,4]] and [[2,1],[3,4]] are considered the
same partitions of [1,2,3,4].

3

- You can assume that all the cows are between 0 and 10 tons in weight
- All the cows have unique names
- If multiple cows weigh the same amount, break ties arbitrarily
- The spaceship has a cargo weight limit (in tons), which is passed into the function as a

parameter

Helper function get_partitions:
To generate all the possibilities for the brute force method, you will want to work with set
partitions (http://en.wikipedia.org/wiki/Set_partition). For instance, all the possible 2-partitions of
the list [1,2,3,4] are [[1,2],[3,4]], [[1,3],[2,4]], [[2,3],[1,4]], [[1],[2,3,4]], [[2],[1,3,4]], [[3],[1,2,4]],
[[4],[1,2,3]].

To help you with creating partitions, we have included a helper function
get_partitions(list) that takes as input a list and returns a generator that contains all the
possible partitions of this list, from 0-partitions to n-partitions, where n is the length of this list.

To use generators, you must iterate over the generator to retrieve the elements; you cannot
index into a generator! For instance, the recommended way to call get_partitions on a list
[1,2,3] is the following:

for partition in get_partitions([1,2,3]):
 print(partition)

Try out this snippet of code to see what is printed!

Generators are outside the scope of this course, but if you're curious, you can read more about
them here: http://wiki.python.org/moin/Generators.

Example:
Suppose the spaceship has a cargo weight limit of 10 tons and the set of cows to transport is
{“Jesse”: 6, “Maybel”: 3, “Callie”: 2, “Maggie”: 5}.

The brute force algorithm will first try to fit them on only one trip, [“Jesse”, “Maybel”, “Callie”,
“Maggie”]. Since this trip contains 16 tons of cows, it is over the weight limit and does not work.

Then the algorithm will try fitting them on all combinations of two trips. Suppose it first tries
[[“Jesse”, “Maggie”], [“Maybel”, “Callie”]]. This solution will be rejected because Jesse and
Maggie together are over the weight limit and cannot be on the same trip. The algorithm will
continue trying two trip partitions until it finds one that works, such as [[“Jesse”, “Callie”],
[“Maybel”, “Maggie”]].

The final result is then [[“Jesse”, “Callie”], [“Maybel”, “Maggie”]].

4

http://en.wikipedia.org/wiki/Set_partition
http://wiki.python.org/moin/Generators

Note that depending on which cow it tries first, the algorithm may find a different, optimal
solution. Another optimal result could be [[‘Jesse’, ‘Maybel’],[‘Callie’, ‘Maggie’]].

Problem A.4: Comparing the Cow Transport Algorithms
Implement compare_cow_transport_algorithms. Load the cow data in
ps1_cow_data.txt, and then run your greedy and brute force cow transport algorithms on the
data to find the minimum number of trips found by each algorithm and how long each method
takes. Use the default weight limits of 10 for both algorithms.

Note: Make sure you’ve tested both your greedy and brute force algorithms before you
implement this!

Hints:

- You can measure the time a block of code takes to execute using the time.time()
function as follows:

start = time.time()
code to be timed
end = time.time()
print end – start

This will print the duration in seconds, as a float.

- Using the given default weight limits of 10 and the given cow data, both algorithms

should not take more than a few seconds to run.

Problem A.5: Writeup
Answer the following questions in a PDF file called ps1_answers.pdf.

1. What were your results from compare_cow_transport_algorithms? Which
algorithm runs faster? Why?

2. Does the greedy algorithm return the optimal solution? Why/why not?
3. Does the brute force algorithm return the optimal solution? Why/why not?

Part B: Golden Eggs
After the Aucks transport the cows, one of their interns finds flocks of golden geese. Due to
budget cuts they are forced to downsize their ships so they can’t simply take the geese back,
but instead decide to take their golden eggs back. Their ships can only hold a certain amount of
weight, and are very small inside. So, because all the eggs are the same size, but have different

5

weights, they want to bring back as few eggs as possible that fill their ship’s weight limit. Golden
eggs are all the same size, but may have different densities, thus 1 two-pound egg is better than
2 one-pound eggs.

Problem B.1: Dynamic Programming: Hatching a Plan
The Aucks want to carry as few eggs as possible on their trip as they don’t have a lot of space
on their ships. They have taken detailed notes on the weights of all the eggs that geese can lay
in a given flock and how much weight their ships can hold.
Implement a dynamic programming algorithm to find the minimum number of eggs needed to
make a given weight for a certain ship in dp_make_weight. The result should be an integer
representing the minimum number of eggs from the given flock of geese needed to make the
given weight. Your algorithm does not need to return what the weight of the eggs are, just the
minimum number of eggs.

A solution that does not use dynamic programming will receive zero points for this

problem.

Notes:
- Dynamic programming algorithms will be covered in lecture on October 26th.
- If you try using a brute force algorithm on this problem, it will take a substantially long time
to generate the correct output if there are a large number of egg weights available.
- You may implement your algorithm using the top-down recursive method or the bottom-up
tabulation method. The former was covered in lecture, but we will accept either method.
- The memo parameter in dp_make_weight is optional. You may or may not need to use

this parameter depending on your implementation.

Assumptions:
- All the eggs weights are unique between different geese, but a given goose will always lay
the same size egg
- The Aucks can wait around for the geese to lay as many eggs as they need.

Example:
Suppose the first ship can carry 99 pounds and uses the first flock of geese they find, which
contains geese that lay eggs of weights 1, 5, 10, and 20 pounds.

Your dynamic programming algorithm should return 10 (the minimum number of egg needed to
make 99 pounds is 4 eggs of 20 pounds, 1 egg of 10 pounds, 1 egg of 5 pounds, and 4 eggs of
1 pound).

Hints:
- Dynamic programming involves breaking a larger problem into smaller, simpler
subproblems, solving the subproblems, and storing their solutions. What are the subproblems in
this case? What values do you want to store?

6

- This problem is analogous to the knapsack problem, which you saw in lecture. Imagine the
eggs are items you are packing. What is the objective function? What is the weight limit in this
case? What are the values of each item? What is the weight of each item?

Problem B.2: Writeup
Answer the following questions in the same PDF file ps1_answers.pdf.
1. Explain why it would be difficult to use a brute force algorithm to solve this problem if there
were 30 different egg weights. You do not need to implement a brute force algorithm in order to
answer this.
2. If you were to implement a greedy algorithm for finding the minimum number of eggs
needed, what would the objective function be? What would the constraints be? What strategy
would your greedy algorithm follow to pick which coins to take? You do not need to implement a
greedy algorithm in order to answer this.
3. Will a greedy algorithm always return the optimal solution to this problem? Explain why it is
optimal or give an example of when it will not return the optimal solution. Again, you do not need
to implement a greedy algorithm in order to answer this.

Hand-In Procedure
1. Save

Save your code for Part A as ps1a.py and your code for Part B as ps1b.py. Save your answers
to the questions in Part A.5 and Part B.2 in ps1_answers.pdf.

2. Time and Collaboration Info

At the start of each file, in a comment, write down the number of hours (roughly) you spent on
the problems in that part, and the names of the people you collaborated with. For example:
 # Problem Set 1
 # Name: Jane Lee
 # Collaborators: John Doe
 # Time:
 #
 ... your code goes here ...

3. Sanity checks

After you are done with the problem set, do sanity checks. Run the code and make sure it can
be run without errors.
Make sure that any calls you make to different functions are under if __name__ ==

'__main__'. This will make your code easier to grade and your graders and TAs happy.

7

MIT OpenCourseWare
https://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

