
OBJECT ORIENTED
PROGRAMMING
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 8

6.0001 LECTURE 8 1

OBJECTS
 Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 each is an object, and every object has:
• a type

• an internal data representation (primitive or composite)

• a set of procedures for interaction with the object

 an object is an instance of a type
• 1234 is an instance of an int

• "hello" is an instance of a string

6.0001 LECTURE 8 2

OBJECT ORIENTED
PROGRAMMING (OOP)
 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 can create new objects of some type

 can manipulate objects

 can destroy objects
• explicitly using del or just “forget” about them

• python system will reclaim destroyed or inaccessible
objects – called “garbage collection”

6.0001 LECTURE 8 3

WHAT ARE OBJECTS?
 objects are a data abstraction

that captures…

(1) an internal representation
• through data attributes

(2) an interface for
interacting with object

• through methods
(aka procedures/functions)

• defines behaviors but
hides implementation

6.0001 LECTURE 8 4

 how are lists represented internally? linked list of cells

L =

 how to manipulate lists?
• L[i], L[i:j], +

• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

 internal representation should be private

 correct behavior may be compromised if you manipulate
internal representation directly

EXAMPLE:
[1,2,3,4] has type list

6.0001 LECTURE 8 5

1 -> 2 -> 3 -> 4 ->

ADVANTAGES OF OOP
 bundle data into packages together with procedures
that work on them through well-defined interfaces

 divide-and-conquer development
• implement and test behavior of each class separately
• increased modularity reduces complexity

 classes make it easy to reuse code
• many Python modules define new classes
• each class has a separate environment (no collision on

function names)
• inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

6.0001 LECTURE 8 6

 make a distinction between creating a class and
using an instance of the class

 creating the class involves
• defining the class name

• defining class attributes

• for example, someone wrote code to implement a list class

 using the class involves
• creating new instances of objects

• doing operations on the instances

• for example, L=[1,2] and len(L)

6.0001 LECTURE 8 7

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
 use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 similar to def, indent code to indicate which statements are
part of the class definition

 the word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)
• Coordinate is a subclass of object

• object is a superclass of Coordinate

6.0001 LECTURE 8 8

Implementing the class Using the class

WHAT ARE ATTRIBUTES?
 data and procedures that “belong” to the class

 data attributes
• think of data as other objects that make up the class

• for example, a coordinate is made up of two numbers

 methods (procedural attributes)
• think of methods as functions that only work with this class

• how to interact with the object

• for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8 9

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
 first have to define how to create an instance of
object

 use a special method called __init__ to
initialize some data attributes

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

6.0001 LECTURE 8 10

Implementing the class Using the class

ACTUALLY CREATING AN
INSTANCE OF A CLASS

c = Coordinate(3,4)

origin = Coordinate(0,0)

print(c.x)

print(origin.x)

 data attributes of an instance are called instance
variables

 don’t provide argument for self, Python does this
automatically

6.0001 LECTURE 8 11

Implementing the class Using the class

WHAT IS A METHOD?
 procedural attribute, like a function that works only
with this class

 Python always passes the object as the first argument
• convention is to use self as the name of the first

argument of all methods

 the “.” operator is used to access any attribute
• a data attribute of an object

• a method of an object

6.0001 LECTURE 8 12

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 other than self and dot notation, methods behave just

like functions (take params, do operations, return)
6.0001 LECTURE 8 13

Implementing the class Using the class

HOW TO USE A METHOD
def distance(self, other):

code here

Using the class:
 conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

6.0001 LECTURE 8 14

 equivalent to

c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

Implementing the class Using the class

PRINT REPRESENTATION OF
AN OBJECT
>>> c = Coordinate(3,4)

>>> print(c)

<__main__.Coordinate object at 0x7fa918510488>

 uninformative print representation by default

 define a __str__ method for a class

 Python calls the __str__ method when used with
print on your class object

 you choose what it does! Say that when we print a
Coordinate object, want to show

>>> print(c)

<3,4>

6.0001 LECTURE 8 15

DEFINING YOUR OWN PRINT
METHOD
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):

return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8 16

Implementing the class Using the class

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES
 can ask for the type of an object instance

>>> c = Coordinate(3,4)

>>> print(c)

<3,4>

>>> print(type(c))

<class __main__.Coordinate>

 this makes sense since
>>> print(Coordinate)

<class __main__.Coordinate>

>>> print(type(Coordinate))

<type 'type'>

 use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))

True

6.0001 LECTURE 8 17

Implementing the class Using the class

SPECIAL OPERATORS
 +, -, ==, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

 like print, can override these to work with your class

 define them with double underscores before/after
__add__(self, other) self + other

__sub__(self, other) self - other

__eq__(self, other) self == other

__lt__(self, other) self < other

__len__(self) len(self)

__str__(self) print self

... and others

6.0001 LECTURE 8 18

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS
 create a new type to represent a number as a fraction

 internal representation is two integers
• numerator

• denominator

 interface a.k.a. methods a.k.a how to interact with
Fraction objects
• add, subtract

• print representation, convert to a float

• invert the fraction

 the code for this is in the handout, check it out!

6.0001 LECTURE 8 19

THE POWER OF OOP
 bundle together objects that share
• common attributes and

• procedures that operate on those attributes

 use abstraction to make a distinction between how to
implement an object vs how to use the object

 build layers of object abstractions that inherit
behaviors from other classes of objects

 create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8 20

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

