UNDERSTANDING PROGRAM EFFICIENCY: 2
 (download slides and .py files and follow along!)
 6.0001 LECTURE 11

TODAY

- Classes of complexity
- Examples characteristic of each class

WHY WE WANT TO UNDERSTAND EFFICIENCY OF PROGRAMS

- how can we reason about an algorithm in order to predict the amount of time it will need to solve a problem of a particular size?
- how can we relate choices in algorithm design to the time efficiency of the resulting algorithm?
- are there fundamental limits on the amount of time we will need to solve a particular problem?

ORDERS OF GROWTH: RECAP

Goals:

- want to evaluate program's efficiency when input is very big
- want to express the growth of program's run time as input size grows
- want to put an upper bound on growth - as tight as possible
- do not need to be precise: "order of" not "exact" growth
- we will look at largest factors in run time (which section of the program will take the longest to run?)
- thus, generally we want tight upper bound on growth, as function of size of input, in worst case

COMPLEXITY CLASSES: RECAP

- O(1) denotes constant running time
- $O(\log n)$ denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $O\left(c^{n}\right)$ denotes exponential running time (c is a constant being raised to a power based on size of input)

COMPLEXITY CLASSES ORDERED LOW TO HIGH

COMPLEXITY GROWTH

CLASS	$\mathrm{n}=10$	$=100$	$=1000$	$=1000000$
O(1)	1	1	1	1
$\mathrm{O}(\log \mathrm{n})$	1	2	3	6
$\mathrm{O}(\mathrm{n})$	10	100	1000	1000000
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	10	200	3000	6000000
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$	100	10000	1000000	1000000000000
$\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$	1024	$\begin{array}{r} 12676506 \\ 00228229 \\ 40149670 \\ 3205376 \end{array}$	1071508607186267320948425049060 0018105614048117055336074437503 8837035105112493612249319837881 5695858127594672917553146825187 1452856923140435984577574698574 8039345677748242309854210746050 6237114187795418215304647498358 1941267398767559165543946077062 9145711964776865421676604298316 52624386837205668069376	Good luck!!

CONSTANT COMPLEXITY

- complexity independent of inputs
- very few interesting algorithms in this class, but can often have pieces that fit this class
- can have loops or recursive calls, but ONLY IF number of iterations or calls independent of size of input

LOGARITHMIC COMPLEXITY

- complexity grows as log of size of one of its inputs
- example:
- bisection search
- binary search of a list

BISECTION SEARCH

- suppose we want to know if a particular element is present in a list
- saw last time that we could just "walk down" the list, checking each element
- complexity was linear in length of the list
- suppose we know that the list is ordered from smallest to largest
- saw that sequential search was still linear in complexity
- can we do better?

BISECTION SEARCH

1. pick an index, i, that divides list in half
2. ask if L[i] == e
3. if not, ask if L [i] is larger or smaller than e
4. depending on answer, search left or right half of L for e

A new version of a divide-and-conquer algorithm

- break into smaller version of problem (smaller list), plus some simple operations
- answer to smaller version is answer to original problem

BISECTION SEARCH COMPLEXITY ANALYSIS

- finish looking through list when

$$
\begin{aligned}
& 1=n / 2^{i} \\
& \text { so } i=\log n
\end{aligned}
$$

- complexity of recursion is O(log n) where n is len(L)

BISECTION SEARCH IMPLEMENTATION 1

def bisect_search1(L, e):
if $\mathrm{L}==$ []:
return False
elif len(L) == 1:

$$
\text { return } \mathrm{L}[0]==\mathrm{e}
$$

else:
half $=\operatorname{len}(L) / / 2$

if L[half] > e:

COMPLEXITY OF FIRST BISECTION SEARCH METHOD

- implementation 1 - bisect_search1
- O(log n) bisection search calls
- On each recursive call, size of range to be searched is cut in half
- If original range is of size n, in worst case down to range of size 1 when $n /\left(2^{\wedge} k\right)=1$; or when $k=\log n$
- $O(n)$ for each bisection search call to copy list
- This is the cost to set up each call, so do this for each level of recursion
- $O(\log n) * O(n) \rightarrow O(n \log n)$
- if we are really careful, note that length of list to be copied is also halved on each recursive call
- turns out that total cost to copy is $\mathrm{O}(\mathrm{n})$ and this dominates the log n cost due to the recursive calls

BISECTION SEARCH ALTERNATIVE

- still reduce size of problem by factor of two on each step
- but just keep track of low and high portion of list to be searched
- avoid copying the list
- complexity of recursion is again $0(\log n)-$ where n is len(L)

BISECTION SEARCH IMPLEMENTATION 2

```
def bisect_search2(L, e):
    def bisect_search_helper(L, e, low, high):
        if high == low:
            return L[low] == e
        mid = (low + high)//2
        if L[mid] == e:
            return True
    elif L[mid] > e:
        if low == mid: #nothing left to search
                return False
            else:
                return bisect_search_helper(L, e, low, mid - 1)
    else:
            return bisect_search_helper(L, e, mid + 1, high)
    if len(L) == 0:
    return False
    else:
        return bisect_search_helper(L, e, 0, len(L) - 1)
```


COMPLEXITY OF SECOND BISECTION SEARCH METHOD

- implementation 2 - bisect_search2 and its helper
- O(log n) bisection search calls
- On each recursive call, size of range to be searched is cut in half
- If original range is of size n, in worst case down to range of size 1 when $n /\left(2^{\wedge} k\right)=1$; or when $k=\log n$
- pass list and indices as parameters
- list never copied, just re-passed as a pointer
- thus O(1) work on each recursive call
- $\mathrm{O}(\log \mathrm{n}) * \mathrm{O}(1) \rightarrow \mathrm{O}(\log \mathrm{n})$

LOGARITHMIC COMPLEXITY

def intToStr(i):
digits = '0123456789'
if i == 0:
return '0'
result = ''
while i > 0:
result = digits[i\%10] + result
i = i//10
return result

LOGARITHMIC COMPLEXITY

def intToStr(i):
digits = '0123456789'
if i == 0:
return '0'
res = ''
while i > 0:
res $=$ digits $[i \% 10]+$ res
i = i//10
return result
only have to look at loop as no function calls
within while loop, constant number of steps
how many times through
loop?

- how many times can one divide i by 10 ?
- O(log(i))

LINEAR COMPLEXITY

- saw this last time
- searching a list in sequence to see if an element is present
- iterative loops

O() FOR ITERATIVE FACTORIAL

- complexity can depend on number of iterative calls def fact_iter(n):

$$
\begin{aligned}
& \text { prod }=1 \\
& \text { for } i \text { in range }(1, n+1): \\
& \quad \text { prod } *=i
\end{aligned}
$$

return prod

- overall $O(n)$ - n times round loop, constant cost each time

O() FOR RECURSIVE FACTORIAL

```
def fact_recur(n):
    """ assume n >= 0 """
    if n <= 1:
        return 1
    else:
        return n*fact_recur(n - 1)
```

- computes factorial recursively
- if you time it, may notice that it runs a bit slower than iterative version due to function calls
- still $O(n)$ because the number of function calls is linear in n , and constant effort to set up call
- iterative and recursive factorial implementations are the same order of growth

LOG-LINEAR COMPLEITY

- many practical algorithms are log-linear
- very commonly used log-linear algorithm is merge sort
- will return to this next lecture

POLYNOMIAL COMPLEXITY

- most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- commonly occurs when we have nested loops or recursive function calls
- saw this last time

EXPONENTIAL COMPLEXITY

- recursive functions where more than one recursive call for each size of problem
- Towers of Hanoi
- many important problems are inherently exponential
- unfortunate, as cost can be high
- will lead us to consider approximate solutions as may provide reasonable answer more quickly

COMPLEXITY OF TOWERS OF HANOI

- Let t_{n} denote time to solve tower of size n
- $\mathrm{t}_{\mathrm{n}}=2 \mathrm{t}_{\mathrm{n}-1}+1$
- $=2\left(2 t_{n-2}+1\right)+1$
- $=4 t_{n-2}+2+1$
- $=4\left(2 t_{n-3}+1\right)+2+1$
- $=8 t_{n-3}+4+2+1$
- $=2^{k} t_{n-k}+2^{k-1}+\ldots+4+2+1$
- $=2^{n-1}+2^{n-2}+\ldots+4+2+1$
- $=2^{n}-1$
- so order of growth is $O\left(2^{n}\right)$

$$
\begin{aligned}
& \text { Geometric growth } \\
& \begin{array}{l}
a=\quad 2^{n-1}+\ldots+2+1 \\
2 a=2^{n}+2^{n-1}+\ldots+2 \\
a=2^{n}
\end{array}
\end{aligned}
$$

EXPONENTIAL COMPLEXITY

- given a set of integers (with no repeats), want to generate the collection of all possible subsets - called the power set
- $\{1,2,3,4\}$ would generate
$\circ\},\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$, $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}$
- order doesn't matter
$\circ\},\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\},\{4\},\{1,4\},\{2$, $4\},\{1,2,4\},\{3,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}$

POWER SET - CONCEPT

-we want to generate the power set of integers from 1 to n

- assume we can generate power set of integers from 1 to n-1
- then all of those subsets belong to bigger power set (choosing not include n); and all of those subsets with n added to each of them also belong to the bigger power set (choosing to include n)
- $\}\},\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\},\{4\},\{1,4\},\{2,4\},\{1,2$,
- nice recursive description!

EXPONENTIAL COMPLEXITY

```
def genSubsets(L):
    res = []
    if len(L) == 0:
    return [[]] #list of empty list
    smaller = genSubsets(L[:-1]) # all subsets without
last element
    extra = L[-1:] # create a list of just last element
    new = []
    for small in smaller:
        new.append(small+extra) # for all smaller
```

solutions, add one with last element
return smaller+new \# combine those with last
element and those without

EXPONENTIAL COMPLEXITY

```
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]]
    smaller = genSubsets(L[:-1])
    extra = L[-1:]
    new = []
    for small in smaller:
        new.append(small+extra)
    return smaller+new
```

assuming append is constant time
time includes time to solve smaller problem, plus time needed to make a copy of all elements in smaller problem

EXPONENTIAL COMPLEXITY

```
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:
        new.append(small+extra)
    return smaller+new
```

but important to think about size of smaller
know that for a set of size k there are 2^{k} cases
how can we deduce overall complexity?

EXPONENTIAL COMPLEXITY

- let t_{n} denote time to solve problem of size n
- let s_{n} denote size of solution for problem of size n
- $t_{n}=t_{n-1}+s_{n-1}+c$ (where c is some constant number of operations)
- $t_{n}=t_{n-1}+2^{n-1}+c$
- $=t_{n-2}+2^{n-2}+c+2^{n-1}+c$
- $=t_{n-k}+2^{n-k}+\ldots+2^{n-1}+k c$
- $=t_{0}+2^{0}+\ldots+2^{n-1}+n c$
- $=1+2^{n}+n c$

Thus
computing
power set is
$O\left(2^{n}\right)$

COMPLEXITY CLASSES

- O(1) - code does not depend on size of problem
- $O(\log n)$ - reduce problem in half each time through process
- $O(n)$ - simple iterative or recursive programs
- $O(n \log n)$ - will see next time
- $O\left(n^{c}\right)$ - nested loops or recursive calls
- $O\left(c^{n}\right)$ - multiple recursive calls at each level

SOME MORE EXAMPLES OF ANALYZING COMPLEXITY

COMPLEXITY OF ITERATIVE FIBONACCI

```
def fib_iter(n):
    |if n == 0:
```

- Best case: O(1)
- Worst case:

```
    else:
\begin{tabular}{|c|c|}
\hline e: & \\
\hline \[
\begin{array}{l|l|l}
\hline \text { fib_i }=0 & & \text { constant } \\
\text { fib_ii }=1 & \text { ol }
\end{array}
\] & \(\mathrm{O}(1)+\mathrm{O}(\mathrm{n})+\mathrm{O}(1) \rightarrow \mathrm{O}(\mathrm{n})\) \\
\hline ```
for i in range(n-1):
    tmp = fib_i
    fib_i = fib_ii
    fib ii = tmp + fib_ii
``` & \(o(n)\) \\
\hline
\end{tabular}
\(\mathrm{O}(1)+\mathrm{O}(\mathrm{n})+\mathrm{O}(1) \rightarrow \mathrm{O}(\mathrm{n})\)
```

    return fib_ii
    
return 士ıb_11

## COMPLEXITY OF RECURSIVE FIBONACCI

```
def fib_recur(n):
 """ assumes n an int >= 0 """
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib_recur(n-1) + fib_recur(n-2)
```

- Worst case: $\mathrm{O}\left(2^{\mathrm{n}}\right)$



## COMPLEXITY OF RECURSIVE FIBONACCI



- actually can do a bit better than $2^{n}$ since tree of cases thins out to right
- but complexity is still exponential


## BIG OH SUMMARY

- compare efficiency of algorithms
- notation that describes growth
- lower order of growth is better
- independent of machine or specific implementation
- use Big Oh
- describe order of growth
- asymptotic notation
- upper bound
- worst case analysis


## COMPLEXITY OF COMMON PYTHON FUNCTIONS

- Lists: n is len (L)
- index O(1)
- store $O(1)$
- length O(1)
- append O(1)
- == $\quad O(n)$
- remove O(n)
- copy O(n)
- reverse O(n)
- iteration O(n)
- in list $O(n)$
- Dictionaries: n is len (d)
- worst case
- index O(n)
- store O(n)
- length O(n)
- delete $O(n)$
- iteration O(n)
- average case
- index O(1)
- store $\quad \mathrm{O}(1)$
- delete O(1)
- iteration O(n)

MIT OpenCourseWare
https://ocw.mit.edu
6.0001 Introduction to Computer Science and Programming in Python

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

