
  
Victor Chernozhukov and Ivan Fernandez-Val. 14.382 Econometrics. Spring 2017. Massachusetts Institute 
of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. 

14.382 L6. NONLINEAR AND BINARY REGRESSION, PREDICTIVE EFFECTS, 
AND M-ESTIMATION 

´ ´VICTOR CHERNOZHUKOV AND IVAN FERNANDEZ-VAL 

Abstract. We begin by formulating nonlinear regression models, where nonlinearity may 
arise via parameters or via variables. We discuss the key estimands for nonlinear regres­
sion – the predictive effects, average predictive effects, and sorted predictive effects. We 
then focus on regression models for binary outcomes. Binary outcomes naturally lead to 
nonlinear regression functions. A natural way to estimate nonlinear regression models is 
through nonlinear least squares or through (quasi)-maximum likelihood methods. The lat­
ter methods are special cases of the M-estimation framework, which could in turn be viewed 
as a special case of GMM. We provide two applications to racial-based discrimination in 
mortgage lending and gender-based discrimination in wages. Here we find heterogeneous, 
sometimes quite large, predictive effects of race on the probability of mortgage denial and 
of gender on average wages. 

1. Nonlinear Regression, Predictive Effects, Average and Sorted PE 

In this lecture we will be concerned with nonlinear predictive models. What do we mean 
by nonlinear models? We consider two kinds of nonlinearities, which are not mutually 
exclusive: 

• nonlinearity in key variables of interest; 
• nonlinearity in parameters. 

Nonlinearities in variables arise from the fact that often we use transformations of vari­
ables in formulating predictive and causal models. For instance, consider the case where 
Y is an outcome variable of interest, and X = (D, W ) is a vector of covariates, where D is 
a binary treatment indicator and W is the set of controls. Then a natural interactive model 
for the expectation of Y given X is 

p(X) := E[Y | X] = B(W )/α0 + DB(W )/δ0, 

where B(W ) is dictionary of transformations of W , e.g. polynomials and interactions. The 
fact that D is interacted with functions of W makes the model nonlinear with respect to D 
and W . The model is still linear in parameters, which can be estimated by least squares. 

1 

https://ocw.mit.edu
https://creativecommons.org/licenses/by-nc-sa/4.0/


´ ´2 VICTOR CHERNOZHUKOV AND IVAN FERNANDEZ-VAL 

Nonlinearity in parameters arises for example from considering models of the sort 

p(X) = p(X, β0), 

where β0 is a parameter value and p is a nonlinear function with respect to β. Such models 
are natural when we consider binary, nonnegative, count, and other types of outcome vari­
ables. While linear in parameters approximations may still perform well, there is value in 
considering both. 

For instance, a linear in parameters model may be natural when modeling log wages 
or log durations, but an exponential model might be preferred to model directly expected 
values of wages or durations given covariates, i.e. 

p(X) = exp(B(X)/β0), 

which respects the fact that wages and durations are nonnegative. 

1.1. What estimands are of interest? Introducing Average and Sorted Effects. The pa­
rameter β often has a useful structural interpretation, as in the binary response models of 
Section 2, and so it is a good practice to estimate and report it. However, nonlinearities 
often make the interpretation of this parameter difficult, because it seems to play only a 
technical role in the model. 

What should we target instead? Here we discuss other estimands that we can identify 
as functionals of β and estimate them using the plug-in principle. They correspond to 
predictive effects of D on Y holding W fixed. Let (d, w)  → p(d, w) be some predictive 
function of Y given D and W , e.g. 

p(d, w) = E[Y | D = d, W = w]. 

When the variable of interest D is binary, we can consider the following estimands: 

(a) predictive effect (PE) of changing D = 0 to D = 1 given W = w:  
θw = p(1, w) − p(0, w),  

(b) average PE (APE) over a subpopulation with the distribution of covariates M :  
θw W 

˜θ = dM(w) = Eθ ˜ , W ∼ M, 

(c) sorted PE (SPE) by percentiles,  

θα = α-quantile of θ ˜ , W̃ ∼ M.  W 

We could also use the name “treatment effect” (TE) instead of “predictive effect” (PE), 
when there is a sense in which the estimated effects have a casual interpretation. 
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All of the above are interesting estimands: 

•	 The PE characterizes the impact of changing D on the prediction at a given control 
value w. The problem with PE alone is that there are many possible values w at 
which we can compute the effect. We can further summarize the PE θw in many 
ways. 

•	 For example, we can use PEs θw for classification of individuals into groups that are 
“most affected” (all i’s such that θWi > t1 for some threshold t1) and the “least 
affected” (all i’s such that θWi < t2 for some threshold t2). We do so in our empiri­
cal applications and then present the average characteristics of those most affected 
and least affected. For example, in the mortgage application, the group that will 
be most strongly affected are those who are either single or black or low income, 
or all of the above. 

•	 We can use the PEs to compute APEs by averaging θw with respect to different dis­
tributions M of the controls. For example, in the mortgage example, the APE for 
all applicants and for black applicants are different. 

•	 We can use the PEs to compute the SPEs, which give a more complete summary 
of all PE’s in the population with controls distributed according to M . Indeed, for 
example, APE could be small, but there could be groups of people who are much 
more strongly affected. 

As for the choice of the distribution M , in the empirical applications we shall report the 
results for 

•	 M = FW , the distribution of controls in the entire population, and 

•	 M = FW D=1, the distribution of controls in the ”treated” population. | 

In the context of treatment effect analysis, using M = FW corresponds to computing the 
so called “average treatment effect,” and using M = FW D=1 to the “average treatment |
effect on the treated.” 

When D is continuous we can also look at estimands defined in terms of partial 
derivatives: 

(a)/ predictive partial effect (PE) of D when W = w at D = d:  
θx = (∂/∂d)p(d, w),  
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(b)/ average PE (APE) over a subpopulation with distribution of covariates M , 

˜θxdM(x) = Eθ ˜ , X ∼ M, X 

(c)/ sorted PE (SPE) by percentiles, 

θα = α-quantile of θ ˜ , X̃ ∼ M. X 

Figure 1 shows estimated APE and SPE of the gender wage gap on the treated female 
population conditional on worker characteristics. Figure 2 shows estimated APE and SPE 
of race on the probability of mortgage denial conditional on applicant characteristics for 
the entire population. These two applications are discussed in more detail in Section 4. 

1.2. Estimation and Inference on Technical Parameters. The models described above can 
be estimated by nonlinear least squares 

β̂ ∈ arg min Enm(Z, β), 
β∈B 

⊆ Rdim βwhere m is the square loss function m(Z, β) = (Y − p(X, β))2, and B is the 
parameter space for β. This approach is motivated by the analogy principle, since the true 
value of the parameter solves the population problem: 

β0 = arg min Em(Z, β). 
β∈B 

This formulation emphasizes that the nonlinear least squares estimator is an M-estimator 
with loss function m. 

The consistency of β̂ is immediate from the Extremum Consistency Lemma. Root-n con­
sistency and approximate normality follow from the fact that the nonlinear least squares 
estimator is a GMM estimator with the score function 

∂ 
g(Z, β) := m(Z, β),

∂β 
ˆsince β̂ solves Eng(Z, β) = 0 in the sample, and β0 solves Eg(Z, β0) = 0 in the population, 

provided that the solutions are interior to the parameter space B. Thus the approximate 
normality and bootstrap results of L4 and L5 apply here. Even though nonlinear least 
squares can be reformulated as GMM for figuring out its theoretical properties, it is often 
not convenient to treat nonlinear least squares as GMM for computational purposes. 

1.3. Estimation and Inference on Target Parameters. Having obtained estimators β̂ of the 
technical parameters, we can obtain the estimators of various estimands – (a), (b), (c), (a)/, 
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Figure 1. The APE and SPE of gender wage gap on the treated female pop­
ulation conditional on job market characters. The estimates are obtained via 
the plug-in principle and the 90% confidence sets are obtained by empirical 
bootstrap with 500 repetitions. 

(b)/, and (c)/ using the plug-in principle. For example, the estimator of the predictive effect 
(PE) of changing D = 0 to D = 1 given W = w is given by 

ˆ ˆ ˆθw = p̂(1, w) − p̂(0, w) = p(1, w, β) − p(0, w, β). 

The asymptotic properties of this estimator follow from the delta method. We can also use 
the bootstrap to approximate the distribution of this estimator since it is approximately 
linear with respect to β̂, which is a GMM estimator. 

A more complicated quantity is the average PE. Consider, for example, the case where 
the distribution M over which we integrate is the overall population, so that M = FW . 
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Figure 2. The APE and SPE of being black on the probability of mort­
gage denial conditional on applicant characteristics for the entire popula­
tion. The estimates are obtained via the plug-in principle and the 90% con­
fidence sets are obtained by empirical bootstrap with 500 repetitions. 

Then the natural estimator is 
n

1
θ̂ = ˆ ˆθwdFW (w) = θ̂Wi , n 

i=1 

where F̂W is the empirical distribution function of Wi’s, an estimator of FW . The estimator 
θ̂ has two sources of uncertainty: one is created by estimation of θ̂w and one is created 
by estimation of FW , so the situation is potentially more complicated. However, we can 
approximate the distribution of this estimator using the bootstrap. To see why bootstrap 

∫
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works we can represent the estimator as a GMM estimator with the score function: ⎛ ⎞ 
θ − p(1,Wi, β) + p(0,Wi, β), 

g̃(Zi, γ) = ⎝ ∂ ⎠ , γ := (θ, β/)/. 
m(Zi, β)

∂β 
Here we “stack” the score functions for the two estimation problems together to form the 
joint score function. This allows us to invoke the GMM machinery for the analysis of the 
theoretical properties of this estimator – we can write down the large sample variance and 

ˆ ˆ distribution of γ̂ = (θ, β/)/. Moreover, we can use the bootstrap for calculating the large 
sample variance and distribution. We shall tend to use the bootstrap as a more convenient 
and practical approach. 

Here we provide an explicit algorithm for the bootstrap construction of the confi­
dence band for the APE θ: 

(1) Obtain many bootstrap draws θ̂∗(j), j = 1, . . . , B, of the estimator θ̂, where the 
index j enumerates the bootstrap draws. 

(2) Compute the bootstrap variance estimator 
B 

ŝ2 = B−1 (θ̂∗(j) − θ̂)2 , 
j=1 

(or use the estimate based on the interquartile range). 
(3) Compute the critical value   

ˆ ˆc(1 − a) = (1 − a)-quantile of |θ ∗(j) − θ|/s,̂ j = 1, . . . , B . 

(4) Report the confidence region for θ with confidence level 1− a as [θ̂± c(1 − a)ŝ]. 

Figures 1 and 2 present confidence intervals for the APE obtained using this algorithm. 
There are other versions of the confidence intervals we can report. For example, we can 
report the confidence interval as simply the region between the a/2 and 1 − a/2 quantiles 
of the sample of the bootstrap draws θ̂∗(j) for j = 1, . . . , B. 

The reasoning for other parameters is very similar. For example, the estimators of the 
sorted PEs for the population M = FW are obtained by sorting the values of PEs: 

ˆPE = (θWi , i = 1, . . . , n) 

in the increasing order. Given a grid of percentile indices A ∈ [0, 1] we then obtain 

θ̂α = α − quantile of PE, α ∈ A. 

The sorted PEs θα could be represented as GMM estimands and the same logic as for APE 
applies to them – however, we now do skip the details, because they are immaterial to the 

∑
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discussion that follows below (see [4]). Moreover, the sorted PEs carry the percentile index 
α ∈ [0, 1] and we can construct joint confidence band for θα for α’s on a grid A ∈ [0, 1] along 
the lines of L1, where we used the normal approximations to do so, but we can also use 
the bootstrap instead of the normal approximations. 

Here we provide an explicit algorithm for the bootstrap construction of the joint 
confidence bands for SPEs (θα)α∈A: 

(1) Obtain many bootstrap draws 

(θ̂  
α 
∗(j))α∈A, j = 1, . . . , B 

of the estimator (θ̂α)α∈A, where index j enumerates the bootstrap draws. 
(2) For each α in A compute the bootstrap variance estimate 

B 

ŝ2(α) = B−1 (θ̂∗(j) − θ̂α)2 ,α 
j=1 

(or use the estimates based on the interquartile ranges). 
(3) Compute the critical value   

ˆ ˆc(1 − a) = (1 − a)-quantile of max |θ ∗(j) − θα|/ŝ(α), j = 1, . . . , B .α
α∈A 

(4) Report the joint confidence region for (θα)α∈A of level 1 − a as  

[θ̂α ± c(1 − a)ŝ(α)], α ∈ A.  

The confidence region for (θα)α∈A might contain nonincreasing functions if the lower 
and upper-end functions, α  → θ̂α −c(1−a)ŝ(α) and α  → θ̂α +c(1−a)ŝ(α), are not increas­
ing. Since the target function α  → θα is nonincreasing, we can improve the finite sample 
properties of the confidence region by monotonizing the lower and upper functions using 
the monotone rearrangement of [3]. This method is described in L7. 

Figures 1 and 2 present confidence bands obtained using this algorithm. 

2. The Case of Binary Outcomes: An In-Depth Look 

2.1. Modeling. Consider the problem where the outcome variable Y is binary, taking val­
ues in {0, 1}, D is a variable of interest, for example a treatment indicator, and W is the set 
of controls. We are interested in the predictive effect of D on Y controlling for W . We shall 
use an example of racial discrimination in lending, where Y is the indicator of mortgage 
denial, D is an indicator for the applicant being black, and W is a set of controls including 
financial variables and other characteristics of the applicant. 

∑
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We can always begin the analysis by building predictive linear models that project out­
comes on the main variable D and the controls W in the sample. Such predictive models 
are linear and we might wonder if we can do better with nonlinear models. 

The best predictor of Y in the mean squared error sense is the conditional expectation: 

E[Y | X] = P[Y = 1 | X] =: p(X), X := (D, W ), 

which is nonlinear in general. This observation suggests a possibility that we can do better 
than linear models. Basic binary outcome models postulate the nonlinear functional forms 
for p(X): 

p(X) = F (B(X)/β), 
where B(X) is dictionary of transformations of X (such as polynomials, cosine series, 
linear splines, and their interactions) and F is a known link function. Such F could be 
either of the following: 

F (t) = 0 ∨ t ∧ 1 uniform cdf uniform 
F (t) = Λ(t) = et/(1 + et) logistic cdf logit 
F (t) = Φ(t) normal cdf probit 
F (t) = C(t) = 1/2 + arctan(t)/π cauchy cdf cauchit 
F (t) = Tν (t) cdf of rv t(ν) student 

The functional forms given above have structural interpretation in specific contexts. For 
example, suppose that the expected loss of the bank from denying a loan is given by 

Y ∗ = B(X)/γ − σE , 
noise utility systematic part 

where σE is the component that is not observed by econometrician. Then Y = 1(Y ∗ > 0). 
If E conditional on X is distributed according to the link F , then 

P(Y = 1 | X) = P(E ≤ B(X)/β | X) = F (B(X)/β), β = γ/σ. 

Thus, in the structural interpretation, we can think of B(X)/β as describing the sys­
tematic or the mean part of the decision-maker’s utility or value function. 

Note that β identifies the structural parameter γ only up to a scale.  

The models may not hold exactly, but we can expect that 
p(X) ≈ F (B(X)/β), 

if the dictionary B(X) is rich enough. Thus, if B(X) is rich enough, the choice of F is 
not important theoretically, but could still matter for finite-sample performance. 
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Formally we could state this as follows: if B(X) is a dictionary of r terms that can ap­
proximate any function x  → f(x) such that Ef2(X) < ∞ in the mean square sense, namely 

min E(f(X) − B(X)/b)2 → 0, r → ∞ , (2.1)
b∈Rr 

then if f(X) = F −1(p(X)) has finite second moment, 

min E(p(X) − F (B(X)/b))2 = min E(F (f(X)) − F (B(X)/b))2 
b∈Rr b∈Rr 

¯≤ min(F̄ /)2E(f(X) − B(X)/b)2 → 0, r → ∞ , F / := sup ∂F (t)/∂t. 
b∈Rr 

t∈R 

From this reasoning we could conclude that the choice of the link F is not theoretically 
important for approximating p(X) if the dictionary of technical regressors is sufficiently 
rich. On the other hand the same theoretical observation suggests that the choice of F 
may be important if the dictionary is not rich enough, so in practice the choice of F could 
matter. In the empirical example below we observe little difference between logit and pro-
bit links, which seems to be generally the case, and observe larger differences between the 
predicted probability implied by the logit, cauchit, and linear models. When we observe 
large differences in predicted probabilities, we have to think about choosing a good link 
function F . 

So how to choose F ? A simple device we could use for choosing the functional form F as 
well as the number of terms in the dictionary is sample splitting. We designate a randomly 
selected part of the sample as a training sample and the other part as a validation sample: 

(Y1, X1), . . . , (Ym, Xm), (Ym+1, Xm+1), . . . , (Yn, Xn) . 
training sample validation sample 

We estimate β in the training sample using the maximum (quasi) likelihood estimator β̂
of Section 2.2.1 Then we form the predicted probabilities {F (B(Xi)

/β̂)}, and compute the 
mean squared error (MSE) for predicting Y in the validation sample: 

n
1

(Yi − F (B(Xi)
/β̂))2 . 

n − m 
i=m+1 

We choose the link that exhibits the smallest MSE in the validation sample. Unlike the 
in-sample MSE, this measure does not suffer from over-fitting and is a good measure of 
quality of various prediction procedures. 

In the empirical example below we used the 2 to 1 splitting of the sample, and we con­
clude that logit and probit slightly outperform the linear and the cauchit model. Another 
approach we can pursue is sensitivity analysis, where we compute the empirical results 

1The word quasi designates the fact that the model may not be perfect and may be misspecified in the sense 
that F (B(X)'β) = p(X) with positive probability. 

∑
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using, say, logit, and then also report additional empirical results using other links as a ro­
bustness check. In the empirical example below, for example, using the cauchit link leads 
to qualitatively and quantitatively similar empirical results as the logit. 

2.2. Estimation and Inference on Structural Parameters β. Given the postulated models, 
we can write conditional log-likelihood of Yi given Xi as 

ln f(Yi | Xi, β0) = Yi ln F (B(Xi)
/β0) + (1 − Yi) ln(1 − F (B(Xi)

/β0)), 

where β0 will designate the true value. The maximum (conditional) likelihood (ML) esti­
mator based on the entire sample is 

β̂ ∈ arg min −En ln f(Yi | Xi, β). 
β∈B 

If the model is not correctly specified, we can call the estimator the maximum quasi-
likelihood estimator (QML). 

By the Extremum Consitency Lemma this estimator is consistent for 

β0 = arg min −E ln f(Y | X, β), 
β∈B 

provided that β0 is unique. Since β  → ln f(Y | X, β) is concave in the case of logit and 
probit models (and some others), β0 is unique if the Hessian of the population objective 
function, the information matrix, is positive definite: 

∂∂ 
G = − E ln f(Y | X, β0) > 0. 

∂β∂β/ 

This holds under weak assumptions provided that EB(X)B(X)/ is of full rank. The logit 
and probit estimators are computationally efficient because of the smoothness and con­
vexity of the sample objective functions. 

Given the postulated model, we can also use nonlinear least squares (NLS) estimators: 

β̃ ∈ arg min En(Yi − F (B(Xi)
/β))2 . 

β∈B 

By the Extremum Consistency Lemma, this will be consistent for 
∗ β0 = arg min E(Y − F (B(X)/β))2 , 

β∈B 

provided that β0 
∗ is unique. Note that under correct specification, NLS is less efficient than 

the ML and is also less computationally convenient, because the objective function is no 
longer convex. To have NLS as efficient as ML we need to do additional weighting by the 
inverse of the conditional variance of Yi given Xi, 

p(Xi)(1 − p(Xi)), 
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which needs to be pre-estimated by NLS. Under misspecification of the model, the NLS 
and ML will be consistent for different quantities β0 and β0 

∗. Note that both ML and NLS 
will have some good interpretability under misspecification. 

Given all of the above considerations, a popular choice is to use the ML estimators even 
under misspecification. 

We can treat both NLS and MLE as a special case of the so called M-estimators. 

3. M-Estimation and Inference: General Principles 

A generic M-estimator takes the form 

β̂ ∈ arg min Enm(Zi, β), 
β∈B 

where (z, β)  → m(z, β) is a scalar valued loss function, Zi is a random vector containing 
the data for the observational unit i, and β is a parameter vector defined over a parameter 
space B ⊂ Rd . 

Many estimators are special cases: ordinary least squares, nonlinear least squares, max­
imum (quasi) likelihood, least absolute deviation and quantile regression, just to name a 
few. 

Results such as the extremum consistency lemma suggest that β̂ will be generally con­
sistent for the solution of the population analog of the sample problem above: 

β0 = arg min Em(Z, β), 
β∈B 

provided that β0 is a unique solution of the population problem. 

We can also recognize the M-estimators as GMM estimators for the purpose of stating 
their approximate distributions. If the following FOC hold for the M-estimator 

En 
∂

m(Zi, β̂) = 0,
∂β 

then this estimator is a GMM estimator with the score function: 
∂ 

g(Zi, β) = m(Zi, β). 
∂β 

This reasoning suggests the following general result. 
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Assertion 2 (General Properties of M-estimators) There exist mild regularity conditions 
under which 

a a√ 
n(β̂  − β0) ∼ −G−1√ 

nĝ(β0) ∼ G−1N(0, Ω) = N(0, G−1ΩG−1), 
where 

∂∂ √ 
ĝ(β0) = Eng(Zi, β0), G = Em(Zi, β0), Ω = Var( nĝ(β0)). 

∂β∂β/ 

This follows from the simplification of the more general result we have stated for the 
GMM estimator. Primitive rigorous conditions for this result could be stated along the 
lines of the result stated for the GMM estimator. 

Note that for convex M-problems, when the loss function β  → m(Zi, β) is convex and 
the parameter space B is convex, the conditions for consistency follow under very weak 
conditions. We state the corresponding result as a technical tool in the Appendix. 

A special class of M-estimators are the ML estimators. They correspond to using the 
loss function 

m(Zi, β) = − ln f(Zi, β), 
where z  → f(z, β) is the parametric density function such that z  → f(z, β0) is the true 
density function of Zi. Note that β0 minimizes −E ln f(Zi, β) as long as f(Zi, β0) = f(Zi, β) 
with positive probability for β = β0. Indeed, by strict Jensen’s inequality, 

E ln f(Zi, β) − E ln f(Zi, β0) = E ln f(Zi, β)/f(Zi, β0) 
< ln Ef(Zi, β)/f(Zi, β0) 

f(z, β) 
= ln f(z, β0)dz = 0,

f(z, β0) 

provided E ln f(Zi, β0) is finite. This is known as the information or Kullback-Leibler in­
equality, and the quantity 

E ln f(Zi, β0) − E ln f(Zi, β) 
is known as Kullback-Leibler divergence criterion. Minimizing −E ln f(Zi, β) is the same 
as minimizing the divergence criterion. 

In the case of probit or logit we can think of Zi as (Yi, Xi) and of the density having the 
product form: 

f(Zi, β) = f(Yi | Xi, β)g(Xi), 
where g is the density of X , which is not functionally related to β. This density function 
drops out from the ML estimation of β, since 

ln f(Zi, β) = ln f(Yi | Xi, β) + ln g(Xi).

6
6

∫
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We can think of the probit or logit ML estimators as either conditional or unconditional 
ML estimators. Thus, effectively, the density of X drops out from the picture. 

The ML is a GMM estimator with the score function 
∂ 

g(Zi, β) = ln f(Zi, β). 
∂β 

Under mild smoothness conditions and under correct specification, the following relation, 
called the information matrix equality, holds: 

∂∂ 
G = − E ln f(Zi, β 0) = Var(g(Zi, β0)). 

∂β∂β/ 

Assertion 3 (General Properties of ML-estimators) Under correct specification, there 
exist mild regularity conditions under which the information matrix equality holds and the 
ML estimator obeys: 

a a√ 
n(β̂ML − β0) ∼ −G−1√ 

nĝ(β0) ∼ G−1N(0, G) = N(0, G−1), 
where ĝ(β0) = Eng(Zi, β0). Moreover, asymptotic variance matrix G−1 of the maximum 
likelihood estimator is smaller than asymptotic variance V of any other consistent and asymp­
totically normal GMM estimator for β0, i.e. 

G−1 ≤ V 
in the matrix sense. 

Note that we are better off using the robust variance formula G−1ΩG−1 from the previ­
ous assertion for inference, because it applies both under correct and incorrect specification 
of the model. By contrast, we don’t advise to use the nonrobust variance formula G−1 for 
inference, since the model could be misspecified, causing the information matrix equality 
to break, making G−1 an incorrect variance formula. 

Note that even though we can reformulate the M-estimators as GMM estimators 
for theoretical purposes, we typically don’t use this reformulation for computation. 
Indeed, some M-estimation problems, for example, logit and probit ML estimators, are 
computationally efficient because they solve convex minimization problems, whereas 
their GMM reformulation does not lead to convex optimization problems and hence 
is not computationally efficient. 

4. Empirical Applications 

4.1. Gender Wage Gap in 2012. We consider the gender wage gap using data from the 
U.S. March Supplement of the Current Population Survey (CPS) in 2012. We select white, 
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nonhispanic individuals who are aged 25 to 64 years and work more than 35 hours per 
week during at least 50 weeks of the year. We exclude self-employed workers; individu­
als living in group quarters; individuals in the military, agricultural or private household 
sectors; individuals with inconsistent reports on earnings and employment status; and 
individuals with allocated or missing information in any of the variables used in the anal­
ysis. The resulting sample consists of 29, 217 workers including 16, 690 men and 12, 527 of 
women. 

We estimate interactive linear models by least squares. The outcome variable Y is the 
logarithm of the hourly wage rate constructed as the ratio of the annual earnings to the total 
number of hours worked, which is constructed in turn as the product of number of weeks 
worked and the usual number of hours worked per week. The key covariate D is an indica­
tor for female worker, and the control variables W include 5 marital status indicators (wid­
owed, divorced, separated, never married, and married); 6 educational attainment indica­
tors (0-8 years of schooling completed, high school dropouts, high school graduates, some 
college, college graduate, and advanced degree); 4 region indicators (midwest, south, west, 
and northeast); and a quartic in potential experience constructed as the maximum of age 
minus years of schooling minus 7 and zero, i.e., experience = max(age − education − 7, 0), 

2interacted with the educational attainment indicators. All calculations use the CPS sam­
pling weights to account for nonrandom sampling in the March CPS. 

Table 1 reports sample means for the variables used in the analysis. Working women are 
more highly educated than working men, have slightly less potential experience, and are 
less likely to be married and more likely to be divorced or widowed. The unconditional 
gender wage gap is 25%. 

Figure 1 of Section 1 plots point estimates and 90% confidence bands for the APE and 
SPEs on the treated of the conditional gender wage gap. The PEs are obtained using the 
interactive specification P (T,W ) = (T W, (1 − T )W ). The distribution M = FW |D=1 is 
estimated by the empirical distribution of W for women. The confidence bands are con­
structed by empirical bootstrap with B = 500 repetitions, and are uniform for the SPEs 
over the grid A = {.01, .02, . . . , .98}. We monotonize the bands using the rearrangement 
method of [3]. After controlling for worker characteristics, the gender wage gap for women 
remains on average around 26%. More importantly, we uncover a striking amount of het­
erogeneity, with the PE ranging between 0 and 43%. 

Table 2 shows the results of a classification analysis, exhibiting characteristics of women 
that are most and least affected by gender discrimination. According to this table the 5% 
of the women most affected by gender discrimination earn higher wages, are much more 
likely to be married, have either very low or very high education, and possess much more 
potential experience than the 5% least affected women. 

2The sample selection criteria and the variable construction follow [7]. 

http:01,.02,...,.98
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Table 1. Descriptive Statistics 

All Men Women 

Log wage 2.79 2.90 2.65 
Female 0.43 0.00 1.00 
Married 0.66 0.69 0.63 
Widowed 0.01 0.00 0.02 
Divorced 0.12 0.10 0.15 
Separated 0.02 0.02 0.02 
Never married 0.19 0.19 0.18 
0-8 years completed 0.00 0.01 0.00 
High school dropout 0.02 0.03 0.02 
High school graduate 0.25 0.27 0.23 
Some college 0.28 0.27 0.30 
College graduate 0.28 0.28 0.29 
Advanced degree 0.15 0.14 0.17 
Northeast 0.20 0.20 0.19 
Midwest 0.27 0.27 0.28 
South 0.35 0.35 0.35 
West 0.18 0.19 0.18 
Potential experience 18.96 19.01 18.90 

Number of observations 29,217 16,690 12,527 

Source: March Supplement CPS 2012 

We further explore these findings by analyzing the APE and SPE on the treated condi­
tional on marital status and potential experience. Here we show estimates and 90% con­
fidence bands of the APE and SPEs of the gender wage gap for 3 subpopulations defined 
by marital status (never married, married and divorced women) and 3 subpopulations de­
fined by experience (low, medium and high experienced women, where the experience cut­
offs are 11 and 26, the first and third sample quartiles of potential experience for women). 
The confidence bands are constructed as in fig. 1. We find significant heterogeneity in the 
gender gap within each subpopulation, and also between subpopulations defined by mar­
ital status and experience. The SPEs are much more heterogeneous for women with low 
experience and women that never married. Married and high experienced women suffer 
from the highest gender wage gaps. This pattern is consistent with preferences that make 
single young women be more career-oriented. 
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Table 2. Classification Analysis – Averages of Characteristics of the 
Women Least and Most Affected by Gender Discrimination 

Characteristics 5% Least Affected 5% Most Affected 
of the Group PE > −.03 PE < −.39 

Log Wage 2.61 2.87 
Female 1.00 1.00 
Married 0.03 0.94 
Widowed 0.00 0.01 
Divorced 0.01 0.03 
Separated 0.00 0.01 
Never married 0.96 0.01 
0-8 years completed 0.01 0.03 
High school dropout 0.04 0.15 
High school graduate 0.00 0.01 
Some College 0.09 0.00 
College graduate 0.61 0.12 
Advanced Degree 0.25 0.69 
Notheast 0.35 0.23 
Midwest 0.26 0.26 
South 0.23 0.29 
West 0.16 0.22 
Potential experience 4.31 25.70 

4.2. Analyzing Predictive Effect of Race on Mortgage Denials. To illustrate the methods 
for binary outcomes, we consider an empirical application to racial discrimination in the 
bank decisions of mortgage denials. We use data of mortgage applications in Boston for 
the year 1990 collected by the Federal Reserve Bank of Boston in relation to the Home 
Mortgage Disclosure Act (HMDA), see [8]. The HMDA was passed to monitor minority 
access to the mortgage market. Providing better access to credit markets can arguably help 
the disadvantaged groups escape poverty traps. Following [9], we focus on white and 
black applicants for single-family residences. The sample comprises 2, 380 observations 
corresponding to 2, 041 white applicants and 339 black applicants. 

The outcome variable Y is an indicator of mortgage denial, the key variable D is an 
indicator for the applicant being black, and the controls W contain financial and other 
characteristics of the applicant that the banks take into account in the mortgage decisions. 
These include the monthly debt to income ratio; monthly housing expenses to income ra­
tio; a categorial variable for “bad” consumer credit score with 6 categories (1 if no slow 
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Figure 3. APE and SPE of the gender wage gap for women by marital sta­
tus. Estimates and 90% bootstrap uniform confidence bands based on a 
linear model with interactions for the conditional expectation function are 
shown. 

payments or delinquencies, 2 if one or two slow payments or delinquencies, 3 if more than 
two slow payments or delinquencies, 4 if insufficient credit history for determination, 5 
if delinquent credit history with payments 60 days overdue, and 6 if delinquent credit 
history with payments 90 days overdue); a categorical variable for “bad” mortgage credit 
score with 4 categories (1 if no late mortgage payments, 2 if no mortgage payment history, 
3 if one or two late mortgage payments, and 4 if more than two late mortgage payments); 
an indicator for public record of credit problems including bankruptcy, charge-offs, and 
collective actions; an indicator for denial of application for mortgage insurance; two indi­
cators for medium and high loan to property value ratio, where medium is between .80 and 
.95 and high is above .95; and three indicators for self-employed, single, and high school 
graduate. 

Table 3 reports the sample means of the variables used in the analysis. The probability of 
having the mortgage denied is 19% higher for black applicants than for white applicants. 
However, black applicants are more likely to have socio-economic characteristics linked to 
a denial of the mortgage, as Table 3 shows. Table 4 compares the unconditional effect of 
race with a conditional effect that controls for the variables in W using linear projection. 
After controlling for characteristics, black applicants are still 8% more likely to have the 
mortgage denied than white applicants with the same characteristics. We can interpret 
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Figure 4. APE and SPE of the gender wage gap for women by experience 
level. Estimates and 90% bootstrap uniform confidence bands based on a 
linear model with interactions for the conditional expectation function are 
shown. 

Table 3. Descriptive Statistics 

All Black White 

deny 0.12 0.28 0.09 
black 0.14 1.00 0.00 
payment-to-income ratio 0.33 0.35 0.33 
expenses-to-income ratio 0.26 0.27 0.25 
bad consumer credit 2.12 3.02 1.97 
bad mortgage credit 1.72 1.88 1.69 
credit problems 0.07 0.18 0.06 
denied mortgage insurance 0.02 0.05 0.02 
medium loan-to-value ratio 0.37 0.56 0.34 
high loan-to-value ratio 0.03 0.07 0.03 
self-employed 0.12 0.07 0.12 
single 0.39 0.52 0.37 
high school graduated 0.98 0.97 0.99 

number of observations 2,380 339 2,041 
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this as race having an economically and statistically significant predictive impact on being 
denied a mortgage. 

Table 4. Basic OLS Results 

A. The predictive effect of black on the mortgage denial rate 

Estimate Std. Error t value Pr(>|t|) 

base rate 0.0926 0.0070 13.16 0.0000 
black effect 0.1906 0.0186 10.22 0.0000 

B. The predictive effect of black on the mortgage denial rate, 
controlling linearly for other characteristics 

Estimate Std. Error t value Pr(>|t|) 

black effect 0.0771 0.0172 4.48 0.0000 

We next consider nonlinear specifications to model the conditional probabilities of being 
denied a mortgage. We begin by examining the sensitivity to the choice of link function. 
Figure 5 compares the linear, cauchit and probit models with the logit model in terms of 
predicted probabilities. All the models use a linear index B(X)/β = βDD + W /βW . For 
this parsimonious specification of the index, the predicted probabilities are sensitive to 
the choice of link function. Linear and cauchit links produce substantially different prob­
abilities from the logit link, while logit and probit probabilities are very similar. To select 
the link function, we apply the procedure described in Section 2 by randomly splitting the 
data into a training sample and a validation sample, which contain 2/3 and 1/3 of the 
original sample, respectively. We estimate the models in the training sample and evaluate 
their goodness of fit in terms of mean squared prediction error in the validation sample. 
The results in Table 5 show that logit and probit outperform the linear and cauchit links, 
but the difference is small in this application. 

Table 5. Out-of-Sample Mean Squared Prediction Error 

Logit Probit Cauchit Linear 
0.2703 0.2706 0.2729 0.2753 

Figures 2 and 6 plot estimates and 90% confidence sets for the APE and SPE for all the 
applicants and the black applicants, respectively. The PEs are obtained estimating a logit 
model in the entire sample. The confidence sets are obtained by empirical bootstrap with 
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Figure 5. Comparison of predicted conditional probabilities of mortgage 
denial. The top panel compares cauchit and linear against the logit model. 
The bottom panel compares the probit vs logit models. 



´ ´22 VICTOR CHERNOZHUKOV AND IVAN FERNANDEZ-VAL 

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Logit model
Percentile index

C
ha

ng
e 

in
 p

ro
ba

bi
lit

y

SPE
APE
90% CB(SPE)
90% CB(APE)

Figure 6. The APE and SPE of race on the predicted conditional probabil­
ities for black applicants. 90% confidence sets obtained by empirical boot­
strap with 500 repetitions. 

500 repetitions and are uniform for the SPE in that they cover the entire SPE with proba­
bility 90% in large samples. Interestingly, the APE for black applicants is 7.6%, higher than 
the APE of 5.3% for all the applicants. The SPEs show significant heterogeneity in the ef­
fect of race, with the PE ranging between 0 and 15%. Table 6 shows that the applicants 
most affected by race discrimination are more likely to have either of the following charac­
teristics: black, self employed, single and not graduated from high school, with high debt 
to income, expense to income and loan to value ratios, bad consumer and credit scores, 
credit problems, and the mortgage insurance application not denied. 
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Table 6. Classification Analysis: Averages of Characteristics of the Least 
and Most Affected Groups 

Characteristics 5% Most Affected 5% Least Affected 
of the Groups Predictive Effect > .14 Predictive Effect < .01 

deny 0.54 0.15 
black 0.41 0.09 
debt-to-income ratio 0.40 0.24 
expense-to-income ratio 0.29 0.20 
consumer credit score 4.85 1.49 
mortgage credit score 1.99 1.33 
credit problem 0.64 0.10 
denied mortgage insurance 0.00 0.10 
medium loan-to-house ratio 0.60 0.08 
high loan-to- house value 0.10 0.03 
self employed 0.18 0.08 
single 0.56 0.13 
high school graduate 0.92 0.99 

Notes 

Probit and logit binary regressions were introduced by Chester Bliss [1], Ronald Fisher 
[2, Appendix], and David Cox [5]. Peter Huber developed the theory for M-estimators in 
[6]. Reporting sorted partial effects in nonlinear regression models was proposed in [4]. 
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Appendix A. Tool: Extremum Consistency Lemma for Convex Problems 

It is possible to relax the assumption of compactness in extremum consistency lemma, 
if something is done to keep the objective function Q̂(θ) from turning back down towards 
its minimum, i.e. prevent ill-posedness. One condition that has this effect, and has many 
applications, is convexity (for minimization, concavity for maximization). Convexity also 
facilitates efficient computation of estimators. 

Lemma 1. (Consistency of Argmins with Convexity): If θ  → Q̂(θ) is convex and i) θ  → Q(θ) is 
continuous and is uniquely minimized at θ0; ii) Θ is a convex subset of Rk; iii) Q̂(θ) →P Q(θ) for 
each θ ∈ Θ; then θ̂ →P θ0. 

The proof of this lemma partly relies on the following result, which is a stochastic version 
of a well-known result from convex analysis. 

Lemma 2 (Uniform pointwise convergence under convexity). If θ  → Q̂(θ) is convex and 
ˆ	 ˆQ(θ) →P Q(θ) < ∞ on an open convex set A, then for any compact subset K of A, supθ K |Q(θ)−∈ 
Q(θ)| →P 0, and the limit criterion function θ  → Q(θ) is continuous on A. 

Appendix B. Problems 

(1) State the score function g(·, ·) and moment Jacobian matrix G for the probit and 
logit quasi-maximum likelihood estimators. 

(2) Argue that large sample properties of the estimator of the average predictive effect 
(b) could be obtained via the GMM approach. Argue that you can apply bootstrap 
to approximate the distribution of this estimator. A challenge problem for an extra 
credit: provide a similar argument for the sorted predictive effect. 

(3) Estimate average predictive effects and sorted predictive effects (at various per­
centile indices) of race on the probability of mortgage denial using the mortgage 
data. Explain the choice of the link function you have made and provide results 
for two different link functions. Report confidence intervals based on the boot­
strap. You can present the results in a table or as in the figures above. 
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