Problem Set 6

1. Let X_1, \ldots, X_n be iid with

$$f(x \mid \theta) = \begin{cases} e^{-(x-\theta)}; & \theta \le x < \infty \\ 0; & \text{otherwise} \end{cases}$$

Let us define $Y = \min \{X_1, \ldots, X_n\}$.

- (a) Find the pdf $f_Y(y \mid \theta)$ of Y.
- (b) For each realization of Y = y find values of $\theta_U(y)$ and $\theta_L(y)$ such that

$$F_Y(y \mid \theta_U(y)) = \frac{\alpha}{2}; \quad F_Y(y \mid \theta_L(y)) = 1 - \frac{\alpha}{2}$$

- (c) Show that $[\theta_L(Y), \theta_U(Y)]$ is a confidence interval for θ with a confidence level equal to 1α .
- 2. Suppose that X_1, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ with known σ^2 . Find a minimum value of n to guarantee that a 0.95 confidence interval for μ will have length no more than $\frac{\sigma}{4}$.
- 3. Assume that X_1, \ldots, X_n are iid Poisson (λ)
 - (a) Construct a Wald type configure set for λ .
 - (b) Construct a confidence set for λ by inverting Lagrange multiplier (score) test.

14.381 Statistical Method in Economics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.