Midterm Examination

- 1. True, false, or uncertain? Explain your answer briefly.
 - (a) If $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators for parameter θ , then $\frac{1}{3}\hat{\theta}_1 + \frac{2}{3}\hat{\theta}_2$ must be unbiased for θ .
 - (b) Estimators obtained by the maximum likelihood method are unbiased.
 - (c) If X_1, X_2, \ldots, X_n are i.i.d. normal random variables $N(\mu, \sigma^2)$, then $\bar{X} \cdot 5$ is independent of $\sum_{i=1}^n (X_i \bar{X})^2/20$, where \bar{X} is the sample mean.
- 2. Let us have two independent random samples: X_1, \ldots, X_n is a sample from $N(\mu_x, \sigma_x^2)$, and Y_1, \ldots, Y_m is a sample from $N(\mu_y, \sigma_y^2)$.
 - (a) Write down a joint pdf for $\{X_1, \ldots, X_n, Y_1, \ldots, Y_m\}$.
 - (b) Find a 4-dimensional sufficient statistic.
 - (c) Find the MLE of σ_x^2 and σ_y^2 .
 - (d) Assume for this question only that $\sigma_x^2 = \sigma_y^2 = \sigma^2$. Find the MLE for σ^2 .
 - (e) Find a LR test statistic for testing $H_0: \sigma_x^2 = \sigma_y^2$.
 - (f) Suggest an exact test for testing $H_0: \sigma_x^2 = \sigma_y^2$. Hint: if $U \sim x_p^2$ and $V \sim x_q^2$ are independent, then $\frac{U/p}{V/q} \sim F_{p,q}$ (Fisher distribution)
 - (g) Assume that n = 100, m = 50, $s_x^2 = 5$, $s_y^2 = 6$. Test the hypothesis H_0 : $\sigma_x^2 = \sigma_y^2$ using the test received in (f) at 95% level. Tables of quantailes of Fisher distribution are provided.
 - (h) Test $H_0: \sigma_x^2 = \sigma_y^2$ vs. $H_1: \sigma_x^2 \neq \sigma_y^2$ by using an *asymptotic* LR test and the data as in (g).
 - (i) Suggest a confidence set for $\beta = \frac{\sigma_x^2}{\sigma_y^2}$.

14.381 Statistical Method in Economics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.