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Revisiting Graphs and
Hierarchical Bayes:

@ ©

T a Hierarchical relationship between
variables
@ b All are random
@ pfﬁﬁg t ¢ Represented by directed acyclic
graphs
@ l = Bayesian Networks

®
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example
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Visit To Asia

Visit 1.00
No Visit 99.0

v

Smoking

Smoker 50.0
NonSmoker 50.0

P

N

Tuberculosis

Lung Cancer

Bronchitis

Present 1.04

Normal 89.0

S

Present 43.6
Absent 56.4
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Present 5.50 Present 45.0
Absent 99.0 Absent 94.5 Absent 55.0
Tuberculosis or Cancer
True 6.48
False 93.5
XRay Result Dyspnea
Abnormal 11.0




Bayesian Networks can be used to model a large “ interdisciplinary”
dependences and assess

a Evidence
b Uncertainty

You will find tons of material and papers using Bayesian Networks.
Especially in Ecological and Environmental application. and climate
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Markov Networks

A markov chain is a Bayesian Network

O O O O O

We may model “lattices” through Markov Networks
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Markov random field example “ two-way interactions”
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Recall again
C—C—()

P(X17X27X3)

(x1|x2, X3)p(X2|X3)P(X3)
p(x1|x2)p(X2[x3)P(X3)
p(Xs|x2)p(X2|x1)P(X1)
p(x1|x2)p(X3]x2)P(x2)

p
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General Formulation

MRF==Gibbs Random Fields

" o "
C @ )
o 9 o

Clique= N¢(Xj)
P(X;|X) = P(X;i|Ne(X;))
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E.g Ising model for feromagnetism

—1
Efl(x):ﬁx €Z[\;(X)X/‘/"le
I,m c\A\jj

P(x) = %e, 5y Ei(x)
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The joint and conditional views

@ o o
o
@ o o

P) = [T vsC Ne(xp)) POalx\x (i, ) = POGINC3))

Ul
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Hammersley-Clifford

PO=5  oolx)

ceCL(9)

c-clique, Vx € ¢, C C {x, N(x)}
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For Bayesian Networks

p(x) = p(xilpa(xi))

pa -parent

For Markov Networks

p(x) = ‘p(xf) p(xi, X;)
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Probabilities and Potentials

P(x)oc  (xi)  o(xi,X)
i i
So“renormalization” doesn’t become an issue
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Factor graph

Y Yo @Ys
w()ﬁ ) }/1)

Xi Xo X s

d(X1, X2) = P12

)1 Xt P12 X2 ¢z X3 Y3
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Inference and Belief Propagation

What is p(x) = p(x1, X2, . . ., Xn)?
what is p(xy)?

p(x1) = p(x1, X2, X3)

X3 X2

= o(xX1)Y (X1, X2)d(X2) Y (X2, X3)P(X3)

X3 X2

=o(x1)  Y(x,x)o(x)  d(x3)Y(X2, X3)

X2 X3
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Message Passing

d(x1)  Y(x1,X)p(x2)  Y(xa, X3)P(X3)

Xo X3

H3—2(X2)

po—1(X1) = P(xy, X2)p(X1)13—2(X1)

X2
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Generalizing

bj(x) = tik—j (X))
keNe(j)

pisi (6 = (X, %) Lk (X})
j keENs())
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Example
M2 d(x2) 1352 B(X3)
e e
d(x1) H1—2 o(x2) H2-3
Constant

at either end

"Forward-Backward”,"Frontier Propagation": variety of schemes
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Inference on

» Markov Networks
» Bayesian(Belief) Networks

Via
» Belief Propagation

» As an example, let’s look at EnKF/S from previous lecture as
message passing.

Limitations
() o
(* ) o *

» Graphs with loops: BP does not converge globally.
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Why?

d(x1)  Y(xi,X)p(xe) (X, X3)p(X3) (X1, X3)

X2 X3

Have to carry x; around
But-local convergence is often “good enough”

Quantifying Uncertainty



MIT OpenCourseWare
http://ocw.mit.edu

12.8990 Quantifying Uncertainty
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

	Class9:



