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the many sources of uncertainty!
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Quantifying Indefinite Delay
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Quantifying Indefinite Delay

* P(X=delay| M=“Indefinite Delay”)

* P(Z=cancel |
M=“Indefinite Delay”)
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Motivation

Prediction, Estimation, Inference, Decision and Control must contend with
Uncertainty.

Uncertainty quantification is a rigorous subject in its own right with much
recent progress.

Widely relevant, including Climate, Weather, Environmental Sampling,
Hazard Mitigation, Geophysics, Oceans, Geochemistry, Planetary Science,
Economics, Engineering, among others.

“Quantifying Uncertainty” is overdue as a systematic course.



Data, Models and Inference

Observations Numerical Model Forecast

> @<

How can we combine Data and Models to produce an estimate of
nature better than either source alone?
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Objectives

* To understand the methods by which we can
represent, propagate and estimate
uncertainty.

* To explore “interdisciplinary” application.

* To build a community around Uncertainty
Quantification.



Course Series

e Useful preparation for this course:
— Some Probability & Statistics
— Some Linear Algebra
— Some Dynamics/Physics.



Structure

* Meets Every day @ 3:30pm.

* Course web: LOCALLY ARRANGED



Expectations

e Attend class.

* Read the assigned papers/readings

* Do the take home questions.



Some Projects

Wind Ensemble Active Sensing

Modeling response of GEOS-Chem simulations to model parameter
uncertainties

Towards the understating of tropospheric mercury (Hg) decline
Emissions estimation

Classifying Cloud Particles

Quantifying Uncertainty in simple paleoclimate models

Robust non-parametric fits to heteroskedastic data

MCMC in search for exoplanets

MCMC Source Localization

Transit Estimation

Estimation of Chemical Species

Contact me if you are interested in doing a project
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A bit of History

* Science of Uncertainty > 300 years old

— Jacob Bernoulli: Father of Uncertainty
Quantification.

— Abraham DeMoivre

— Francis Galton

From H. Wainer, Picturing the Uncertain World
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Uncertainty Gymnastics

Classic example:
— A dieis rolled 6 times and you get, say: 1,5,4,4,3,2
— | ask “what number comes next?” to my
* 5yearold son:
— Response: 45-one-hundred-million
93 year old grand mother:
— Response: How do you know it’s a fair die?
My mathematician friend:
— Response: Uniform in 1-6 and iid assuming fair.
An unnamed statistical learning colleague
— P(X={1,2,3,5}) = 1/6, P(X=4) = 1/3 and draws from P(X).
Second bright bulb decides there’s something about the sequence

that’s important
— P(X[n] | X[n-1])

17



The Types of Uncertainty

* Epistemic Uncertainty:
— Unknown value of parameter must be imputed.
— The model structure must be estimated.

e Aleatory Variability:

— Parameter may have several outcomes.



Quantifying Uncertainty

* We quantify uncertainty to convert:
— Epistemic Uncertainty =2 Aleatory Variability

* An unknown parameter (that we must impute)
is represented by a probability distribution
that captures uncertainty of its knowledge.

* This is indistinguishable from an aleatory
variability in an inherently probabilistic
outcome.



A Process Perspective

* Random Walk — AR(1)

clear;

close all;

numFrames = 250;

p = zeros(numFrames,2);

animated(l,1,1,numFrames) =0;

for i = 2:numFrames,
p(i,:) = p(i-1,:)+trandn(1,2)*.25;
line(p(i-1:i,1),p(i-1:1i,2), 'LineWidth',2);
axis([-10 10 -10 101]);
frame = getframe;

if i ==
[animated, cmap] = rgb2ind(frame.cdata, 256, 'nodither');
else
animated(:,:,1,1i) = rgb2ind(frame.cdata, cmap, 'nodither');
end
end
filename = 'randwalk.gif';

imwrite(animated, cmap, filename, 'DelayTime', 0.05,
'LoopCount’', inf);
web(filename)
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Random Process

« Random Walk with “more memory”

clear;
close all;
numFrames = 250;
p = zeros(numFrames,2);
animated(l,1,1,numFrames) =0;
for i = 4:numFrames,
p(i,:) = .5*p(i-1,:)+.3*p(i-2,:)+.
2*p(i-3,:)+trandn(1,2)*.25;
line(p(i-1:i,1),p(i-1:1i,2), 'LineWidth',2);
axis([-10 10 -10 101);
frame = getframe;
if i ==
[animated, cmap] = rgb2ind(frame.cdata, 256,
'nodither');
else
animated(:,:,1,i) = rgb2ind(frame.cdata, cmap,
'nodither');
end
end
filename = 'ar3walk.gif';
imwrite(animated, cmap, filename, 'DelayTime', 0.05,
'LoopCount', inf);
web(filename)
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Example: Random vs. Chaotic Process

Error Dispersal
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What’s the difference?

* The outcome at every step in the random process
is random — there is an aleatory variability.

 The outcome at every step in the chaotic process
is deterministic — but we don’t precisely know the
step; an epistemic uncertainty. We represent,
propagate and estimate this uncertainty in
Quantifying Uncertainty.
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Another View



Perfect Reconstruction

Can we answer: what was the initial condition? what is the state at a future time?
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Noise & Uncertainty



Systems Perspective

There is a true system state.
There is a model of the system.

If the model is “perfect” and we knew the
initial condition of the true system exactly, we
can predict forever.

If the model is perfect but we did know the
initial condition,

— predictions have epistemic uncertainty that must
be quantified.



Further

* If the model is imperfect (it is always)
— Joints have friction whose coefficient we don’t know.
— The rods can flex etc.

e Then

— Model Calibration: The parameters (e.g. friction) of
the model must also be estimated.

— Model Selection: The model equations themselves
might have to be adjusted. Difficult problem for
uncertainty quantification.

* At some point: we don’t know what we don’t know.
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From Systems Perspective

* Joint state and parameter estimation.

— Complicated in real-world application (e.g. Climate
and Weather) because the models are often
* NONLINEAR
* HIGH-DIMENSIONAL

— Uncertainty in state (future, initial, current) and
confidence in parameter estimates are to be
guantified

* Can be a complicated (non-Gaussian) function.
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Data Analysis Perspective

* Quantifying Uncertainty important in data analysis

* For example, consider a few prototypical problems:

Problem

Density

Estimation

Regression

Missing Data

Estimate

Parameters of
Probability
Density (Mass)
Function

Parameters of
regression
function

Impute missing
values
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Uncertainty

A pdf of the
parameters
represents

uncertainty

Confidence
intervals, pdf of
parameters

A distribution

Model Selection

Choice of pdf,
number of
parameters

Degrees of
freedom

Rank reduction
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Model Selection and the Bias-Variance
Dilemma



A Bayesian Perspective

* The distribution of the estimated variable
(state, parameter) of interest forms the basis
for quantifying uncertainty (reported as error
bars, confidence intervals, moments etc.)

* We will study estimation in a Bayesian
context:

— Generically,
* P(X]Y) P(Y) = P(Y|X) P(X)



Bayesian Formulations

P(Xy|Y1...Yy) o P(Ye|Xy) ) P(X4|X4—1)P(Xy—1|Y1 ... Ye1)
X

P(a|lY) «x P(Y|a)P(«)

P(a]Y) o< P(Yl]a) ) P(a|B)P(B)
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Estimation Procedures

* Optimization
* Expectation Maximization
 Sampling

— Markov Chain Monte Carlo



MCMC in Inverse Problems



Quantifying Uncertainty

* The objective of this course is to introduce
methods that can be used to quantify uncertainty
in a variety of estimation problems, but

particularly those connected with physical
sciences.

* Uncertainty is almost always represented as a
probability density function; through samples,
parameters or kernels. Our objective is to
represent, propagate and estimate this density.



Structure

* Representation of Uncertainty

— Samples, parametric forms, mixtures, kernels

* Propagation of Uncertainty
— Chain Rule, Fokker Plank

* Sampling approaches

— POD/ROM, Multiscale, Polynomial Chaos
 Model Reduction approaches
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Structure Continued

* Uncertainty Estimation

— Bayesian Estimation (MAP/MLE)

* Variational Inference
— Parametric Density Estimation
— Two-point Boundary Value Problems
— Ensemble Kalman Filter and Smoother
* Expectation Maximization
— Mixture Density Estimation
— Imputation of Missing Data
e Sampling
— Particle Filtering
— Markov-Chain Monte-Carlo
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Content we hope to cover

) Introduction

2 In a Linear Gaussian world

3 Two-Point Boundary Value Problems
@) Ensemble Kalman Filter and Smoother
(5 Markov Chain Monte Carlo

® Applications of MCMC

(@) Particle Filter

Dimensionality Reduction

(9 Density Estimation

Model Selection Criteria
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Not Covered in this class

(1D Model Reduction

@ Polynomial Chaos

@3 Nonlinear Dimensionality Reduction
@ Regression Machines

B Clustering and Classification

® Markov Processes

(@ Graphical Models

Entropy and Information Forms

(9 Compressive Sensing
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