
Chapter 4 

‘Statics’ of a rotating system 

Supplemental reading: 
Holton (1979), chapter 1 and section 3.2 

Houghton (1977), sections 7.3–7.6 

4.1 Geostrophy and hydrostaticity 

In this chapter some terms are introduced which are needed for the subse
quent review of observations. Specifically, we will review hydrostaticity and 
introduce geostrophy – both involve static balances1 . Our approach will be 
‘quick and dirty’. Matters will be approached more carefully in Chapter 6. In 
static balances, forces are balanced by pressure gradients: −�p. Consider a 
rotating fluid in a gravitational field (oriented parallel to the rotation vector; 
viz. Figure 4.1). 

Let the flow consist simply in rotation about the z-axis: Ω+ ω(r), where 
2r = 

√
x2 + y . Moreover, let the flow be steady. The force balance in the 

z-direction will simply be 

∂p 
= −ρg. (4.1) 

∂z 
1It is expected that most readers will be more or less familiar with the contents of this 

chapter. It is included for the few who may have need of it. Nevertheless, the material is 
essential. The reader is urged to make sure that all the exercises that follow this chapter 
can be comfortably handled. 
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Figure 4.1: Orientation of rotation and gravity in cartesian frame. 

This balance is referred to as the hydrostatic balance. In the r-direction the 
radial pressure gradient must balance the centrifugal force: 

ρ(Ω + ω)2 r = 
∂p 

(4.2) 
∂r 

or 

ρ(Ω2 + 2Ωω + ω2)r = 
∂p 
. 

∂r 

Let 

p = p0 + p�, 

where the following expression defines p0 

ρΩ2 ∂p0 
r = 

∂r 
(Ω2r serves to modify �g in geophysical systems). 
So 
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ρ(2Ωω + ω2)r = 
∂p� 

. (4.3) 
∂r 

In general2 , 

ω � Ω 

and 

2Ωωr ∼ 1 ∂p� 
(4.4) = 

ρ ∂r 

The left-hand side of (4.4) is the Coriolis force per unit mass. This force 
is merely the linearization of the centrifugal force in a rotating coordinate 
frame. Equation 4.4 represents what is called geostrophic balance, while (4.3) 
is referred to as cyclostrophic balance. 

It is sometimes convenient to express (4.4) in cartesian coordinates. Fig
ure 4.2 permits us to view the motion in the horizontal plane within the 
rotating system. 

At point A, dr = dx, and ωr = v. Equation 4.4 becomes 

1 ∂p 
2Ωv = , (4.5) 

ρ ∂x

while at point B, dr = dy and ωr = −u, yielding 

1 ∂p 
2Ωu = −

ρ ∂y 
, (4.6) 

As already mentioned, a more systematic presentation of the above will 
be given in Chapter 6. The supplemental reading may also be useful to those 
approaching these topics for the first time. 

The following remarks should be kept in mind: 

2N.B. The quantity ω/2Ω is known as the Rossby number. More generally, it represents 
the relative importance of nonlinear inertial terms and the Coriolis force (based on the 
system rotation). 
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Figure 4.2: Cartesian view of circular motion. 

1. Both hydrostaticity and geostrophy are static balances. It is, of course, 
slightly peculiar to refer to a force balance involving a moving fluid 
as ‘static’. Nevertheless, as long as one refers to a centrifugal force, 
then geostrophy is a statement that two forces balance rather than a 
dynamic (prognostic) statement. 

2. Neither hydrostaticity nor geostrophy is causal relation. 

3. Strictly speaking, Equation 4.1 is true only in the absence of verti
cal acceleration (relative to the already rotating system) and friction. 
Equation 4.4 is always approximate. Nevertheless, for horizontal ac
celerations with time scales longer than a pendulum day (π/Ω) and 
vertical accelerations with time scales longer than the Brunt-Vaisala 
period3 (O(5 minutes)), (4.1) and (4.4) remain very nearly true. These 
conditions apply, for the most part, to the large-scale motions of the 
atmosphere and oceans (at least away from frictional layers at bound
aries). 

4. For motions in the atmosphere and oceans the appropriate choice for 
Ω is its vertical component. The situation is illustrated in Figure 4.3. 

3This is a quantity which will be defined in Chapter 6. It is a measure of stratification. 



37 ‘Statics’ of a rotating system 

Figure 4.3: The vertical component of the rotation vector on a sphere. 

In (4.4), 2Ω is replaced by 2Ω sin φ. The quantity 2Ω sin φ is generally 
given the symbol f and is known as the Coriolis parameter. 

5. When (4.5) and (4.6) apply, �·ρ�v = 0 (Why?). Also, pressure contours 
on a horizontal surface are streamlines. That is to say, geostrophic flow 
is along rather than across pressure contours. In this connection, the 
reader should confirm the Law of Buys-Ballot, namely, (in the Northern 
Hemisphere) when one faces in the direction of geostrophic flow, high 
pressure is on one’s right. 

The following sections contain some additional aspects of balanced flow 
(flow which satisfies (4.1), (4.5), and (4.6)) which will be used in Chapter 5 
(on observations). 

4.2 Scale height and thickness 

In addition to the hydrostatic pressure relation (Equation 4.1) we have the 
gas law 

p = ρRT. (4.7) 
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Using (4.7), (4.1) becomes 

∂p pg 
∂z 

= −
RT	

(4.8) 

or 

∂ ln p 1 g 
∂z 

= −
H 

= −
RT 

,	 (4.9) 

where 

H ≡ RT 
g 

= local scale height 

p = p(surface)e−x (4.10) 

and 

x ≡ 
� z 

0 

dz 
H 
. 

The quantity 

z∗ =	 H0 ln 
psurface 

(4.11) 
���� p 

characteristic scale height 

is almost like height if H doesn’t vary ‘too much’. It is also the basis of 
a popular coordinate system (log–p coordinates). (N.B. For a system in 
geostrophic and hydrostatic balance, the p-field completely determines the 
temperature and horizontal wind fields through Equations 4.9, 4.5, and 4.6.) 

The hydrostatic relation can be rewritten 

dp = −ρg dz 
or 

g
d ln p = dz, −

RT 
yielding 



� � � � 

� � � � 

‘Statics’ of a rotating system	 39 

� z2	
� p2 R 

z1 

dz ≡ thickness = − 
p1 g

T d ln p (4.12) 

(‘thickness’ refers to the vertical separation of two isobaric surfaces). 
The related quantity 

� z � p 

Φ ≡ 
0	
g dz = − 

p0 

RT d ln p (4.13) 

is referred to as geopotential height. The quantity Φ/g is called the height 
field. 

4.3	 Thermal wind and pressure 

coordinates 

It is easily shown4 that 

1 ∂p ∂Φ 
=	 (4.14) 

ρ ∂x ∂x 
z p 

1 ∂p ∂Φ 
= .	 (4.15) 

ρ ∂y 
z 

∂y 
p 

4 

p = p(x, y, z, t) 

and 
∂p ∂p ∂p ∂p 

dp = dx + dy + dz + dt = 0,
∂x ∂y ∂z ∂t 

which implies 
∂z 

� 
∂p 
� �

∂p 
� 

1 ∂p 
∂x 

= − 
∂x z 

/ 
∂z x 

= 
ρg ∂x 

, 

which in turn implies 
�
∂Φ
� 

1 
� 
∂p 
� 

= . 
∂x ρ ∂x p z 
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Equations 4.5 and 4.6 then become 

∂Φ 
fu = −

∂y 
(4.16) 

∂Φ 
fv = + . (4.17) 

∂x 

Now from (4.13), ∂Φ = RT . So differentiating (4.16) and (4.17) with respect 
∂p 

−
p 

to p yields 

∂v R ∂T ∂v 
p
∂p 

= −
f ∂x 

p 

= 
∂ ln p 

(4.18) 

∂u R ∂T ∂u 
p = + = . (4.19) 
∂p f ∂y 

p 
∂ ln p 

Equations 4.18 and 4.19 may be rewritten to yield the thermal wind relations 
(in log –p coordinates): 

1 ∂u H0 ∂u g ∂T 
H ∂ ln p 

= −
H ∂z∗ 

= + 
fT ∂y 

p 

(4.20) 

1 ∂v H0 ∂v g ∂T 
H ∂ ln p 

= −
H ∂z∗ 

= −
fT ∂x 

p 

. (4.21) 

Under many circumstances H
H 

0 ∼ 1, z∗ ∼ z, and pressure surfaces are far 
more horizontal than temperature surfaces. Then 

∂u g ∂T 
∂z 

≈ − 
fT ∂y 

(4.22) 

∂v g ∂T 
∂z 

≈ + 
fT ∂x 

. (4.23) 

From the above expressions for the thermal wind we see that the counterpart 
of the Law of Buys-Ballot for shear is simply that if one is facing in the 
direction in which wind is increasing upward, high temperature is on one’s 
right (again for the Northern Hemisphere). 


