
Chapter 13 

The generation of eddies by 
instability 

Supplemental reading: 

Holton (1979), sections 9.2, 9.3 

Pedlosky (1979), sections 7.1–3 

13.1 Remarks 

In the previous chapters, we examined the wave properties of the atmosphere 
under a variety of circumstances. We have also considered the interactions 
of waves with mean flows. Within General Circulation Theory, it is generally 
held that eddies have to be involved in transporting heat between the tropics 
and the poles. Thus far our study of waves has not provided much insight into 
this matter. As it turns out, vertically propagating stationary Rossby waves 
do carry heat poleward. This heat transport, while not insignificant, is largely 
a byproduct of the fact that the wave momentum flux acts to reduce shears, 
and geostrophic adjustment involves a concomitant reduction of meridional 
temperature gradients. Unfortunately, we will not have time to study these 
mechanisms in these notes. However, the quasi-geostrophic framework es
tablished in Chapter 5 greatly simplifies such studies. This framework will 
be used to study how travelling disturbances arise in the atmosphere. We 
will also sketch some results which suggest that these travelling disturbances 
play the major role in determining the global, temperature distribution. The 
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262 Dynamics in Atmospheric Physics 

generation of such disturbances involves hydrodynamic instability, and be
fore diving into this problem in a meteorological context, it will be useful to 
examine stability in simpler situations. 

Before beginning this topic we should recall possible wave (eddy) sources 
considered thus far: 

1. Direct forcing as produced by tidal heating, flow over mountains, or 
flow through quasi-stationary inhomogeneities in heating. 

2. Resonant free oscillations. These are presumably preferred responses 
to any ‘noise’. However, given the presence of dissipation it is not 
clear what precisely maintains the free Rossby waves observed in the 
atmosphere. Moreover, when the relative phase speeds of Rossby waves 
become small compared to variations in the mean zonal flow, the free 
Rossby waves cease to exist. Observed free Rossby waves have large 
phase speeds. 

The bulk of the travelling disturbances in the (lower) atmosphere and 
oceans are due to neither of the above, but arise as instabilities on the mean 
flow. 

13.2 Instability 

We shall use the word instability to refer to any situation where a pertur
bation extracts ‘energy’ from the unperturbed flow. The word ‘energy’ is 
surrounded by quotes because the concept of energy is not always unam
biguous. Crudely, an instability grows at the expense of the basic flow. The 
precise sense in which this is true may have to be elaborated on. 

This topic has been studied for well over a century. It is still a major area 
of research with many areas of uncertainty and ignorance. In this chapter, 
we can only hope to convey a taste of what is an important, interesting, and 
difficult subject. 

The most commonly studied approach to instability is by way of what 
are called ‘normal mode’ instabilities. We earlier referred to the solutions 
of the homogeneous perturbation equations as free oscillations. These were 
normal mode solutions in the sense that an initial perturbation of such form 
would continue in that form; this would not be true for an arbitrary (or 
non-normal mode) initial perturbation. In particularly simple situations, we 
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solved for the frequencies of these oscillations. In the situations we studied 
(U0 = constant) these frequencies were real, but in other situations these 
frequencies can have an imaginary part, σi. When the sign of σi is such as 
to imply exponential growth in time, the basic state is said to be unstable 
with respect to normal mode perturbations. 

Most of our attention will be devoted to these normal mode instabilities, 
but you should be aware that these are not the only cases of instability. It 
frequently occurs that arbitrary initial perturbations have algebraic rather 
than exponential growth. In addition disturbances may have initial algebraic 
growth followed by algebraic decay. Such situations have frequently been 
ignored in the past because of the eventual decay, but clearly temporary 
growth – especially when rapid – may be of considerable practical importance. 
The plethora of possibilities may be a little confusing, but it is important to 
be aware of them. We will present examples of non-normal mode instability 
later in this chapter. 

13.2.1 Buoyant convection 

This particular example is chosen as a simple example of the traditional 
normal mode approach to instability. The mathematical basis for our inquiry 
is the treatment of simple internal gravity waves in a Boussinesq fluid given 
in Chapter 2. Recall that we were looking at two-dimensional perturbations 
in the x, z-plane on a static basic state with Brunt-Vaisala frequency N . The 
perturbation vertical velocity, w, satisfied the following equation: 

�� 
N2 

� �


wzz + 
σ2 

− 1 k2 w = 0, (13.1)


where w had an x, t dependence of the form ei(kx−σt). As boundary conditions 
we will take 

w = 0 at z = 0, H. (13.2) 

Thus far we have introduced nothing new. However, we will now take N2 < 0! 
As in our earlier analysis, (13.1) has solutions of the form 

w = sin λz, (13.3) 

where 
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N2 
�1/2 

nπ 
λ = 

σ2 
− 1 k = 

H
, n = 1, 2, . . . . (13.4) 

Solving for σ2 we again get 

N2 

σ2 = 
n2π2 , (13.5) 

1 + 
k2H2 

but now σ2 < 0, and 

−N2 
�1/2 

σ = ±i
 . (13.6)

1 + 

k
n
2

2

H
π2

2 

The largest growth rate is associated with n = 1 and k = ∞, and is given by 

σ = i(−N2)1/2 . (13.7) 

13.2.2 Rayleigh–Benard instability 

In reality viscosity and thermal conductivity tend to suppress small scales. 
Very crudely, they produce a damping rate 

d ∼ ν(λ2 + k2) (13.8) 

so that (13.6) becomes 

⎧ 
⎪⎪⎪⎪⎨ n2π2 

⎫ 
⎪⎪⎪⎪⎬−N2 

�1/2 

n2π2 − νk2σ ≈ i
 1 + . (13.9)

k2H21 + 

k2H2
⎪⎪⎪⎪⎩ 

⎪⎪⎪⎪⎭ 
A B 

Term A exceeds term B only over a finite range of k, provided −N2 is large 
enough. A schematic plot of A and B illustrates this. As an exercise you will 
work out the critical value of N2 and the optimum k. The above problem is 
usually referred to as Rayleigh-Benard instability for stress-free boundaries. 
In the atmosphere and oceans, even slightly unstable conditions lead to large 
values of −N2; maximum growth rates very nearly approach the value given 
by (13.7) for 

1 
k ∼ O( ). 

H 
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Figure 13.1: A plot of the buoyant growth term, A, and the diffusive damping term, B, 
in Equation 13.9. 

13.2.3	 Convective adjustment and gravity wave break

ing 

Such growth times are so much shorter than typical time scales for medium– 
large scale motions as to imply that convection will prevent N2<̃0 over the 
longer time scales (at least above the surface boundary layer). This process 
of convective adjustment is of substantial importance in atmospheric and 
oceanic physics and in modelling. 

A practical application of convection adjustment arises in connection 
with vertically propagating gravity waves. Recall that such waves increase 
in amplitude as ez∗/2 and also that such waves are approximately solutions 
to the nonlinear equations. Thus at some height the temperature field asso
ciated with the wave should become statically unstable – but for the onset 
of convection. The intensity of the convection (turbulence) ought to be pro
portional to the time rate of change in temperature which the wave would 
produce in the absence of turbulence. This mechanism is currently believed 
to account for the turbulence in the mesosphere called for in composition 
calculations. 
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13.2.4	 Reversal of mesopause temperature 

gradient 

The ‘wave breaking’ also must lead to the deposition of the waves’ momentum 
flux in the mean flow. If the waves originate in the troposphere (and thus 
have small values of phase speed c), then the deposition of their momentum 
flux will lead to a slowing of mesospheric zonal winds and the reversal of the 
pole–pole temperature gradient as observed at the mesopause (Why?). 

13.2.5	 Kelvin-Helmholtz instability 

This problem consists in the investigation of the free solutions in a stratified 
(constant N2), non-rotating, infinite Boussinesq fluid with the following basic 
velocity profile: 

u0 = U	 for z > 0 

u0 = −U for z < 0.	 (13.10) 

Away from z = 0, solutions of the form eik(x−ct) satisfy 

d2w
�	

N2 
� 

dz2 
+

(u0 − c)2 
− k2 w� = 0.	 (13.11) 

For an infinite fluid our boundary conditions are that w remain bounded as 
|z| → ∞. Also, if 

N2 

(u0 − c)2 
− k2 

is positive for either z > 0 or z < 0, we require the appropriate radiation 
condition. 

The discontinuity in u0 at z = 0 means that we have different solutions 
for z > 0 and z < 0. At z = 0 we require continuity of perturbation vertical 
displacement and pressure. It is easy to show that 

p� 
= 
u0 − c dw�	

(13.12) 
ρ0 ik dz 

and 
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w� = ik(u0 − c)Z, (13.13) 

where Z = vertical displacement. 

Thus we require continuity of 

dw�
(u0 − c)

dz 

and 

w� 
(13.14) 

(u0 − c) 

at z = 0. 
It is also easy to show that no free solutions exist for Re(c) > U . (Why? | |

Hint: Use Eliassen-Palm theorems.) 

Now let 

� 
N2 

�


n1
2 =

(U − c)2 
− k2 (13.15)


� 
N2 

� 

n2
2 = 

c)2 
− k2 . (13.16) 

(U + 

Then for z > 0 

w� = A1e
±in1z , (13.17) 

and for z < 0 

w� = A2e
±in2z . (13.18) 

The choice of sign in (13.17) and (13.18) is made to satisfy boundary condi
tions as z → ±∞. Once these choices are made, (13.14) yields the relation 
between c and k. Solving for this calls for a fair amount of algebra which 
can be found in Lindzen (1974) and Lindzen and Rosenthal (1976). Here we 
shall merely cite the results. 
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13.2.6 Radiating and growing solutions 

(i) For k < N we have a solution where ci = cr = 0, 
U 

w	 = Aein1z for z > 0 

= −Aein2z for z < 0. (13.19) 

(ii) For 
2
N
U 
< k < √N

2U 
we also have solutions given by (13.19) where ci = 0 

and 

� 
N2 

�1/2 

cr = ± 
2k2 

− U2 . (13.20) 

(iii) For k > √N
2U 

we have solutions for which cr = 0 and 

� 
N2 

�1/2 

ci = U2 , (13.21) −
2k2 

where 

w = A1e
−nz for z > 0 
∗ 

=	 A2e 
n z for z < 0 (13.22) 

and 

k2(U + ici)
2 

n 2 = ,	 (13.23) − 
(U − ici)2 

where n = that root of (13.23) with a positive real part. Also, 

U + ici
A2 = A1.	 (13.24) −

U − ici 

The above results show that a strong shear zone can generate both grow
ing interfacial disturbances confined to the shear zone and internal gravity 
waves propagating away from the shear zone. In each case the real phase 
speeds are confined between ±U . 

The instabilities are known as Kelvin-Helmholtz waves. Both these and 
the radiating gravity waves appear to play a major role in clear air turbulence. 
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The radiating gravity waves are a manifestation of the mean flow giving up 
energy to eddies. In that sense, they also constitute a type of instability. 

This becomes clearer if we consider the solution consisting in gravity 
waves radiating away from the shear layer a little further. When waves ra
diate away from a region without any waves approaching that region, we 
have what amounts to an infinite reflection coefficient. This is an extreme 
example of over-reflection. Over-reflection refers to situations where waves 
are reflected with reflection coefficients that exceed one. You may confirm 
for yourself in the present problem that gravity waves incident on the shear 
layer with phase speeds between ±U will, in general, be over-reflected. Fi
nally, it should be noted that if we had a reflecting boundary below and/or 
above the shear layer, then over-reflection could lead to growing modes. A 
wave approaching the shear layer would be over-reflected and returned to the 
reflecting boundary with increased amplitude. Reflection at the boundary 
would return the wave to the over-reflecting shear layer for further amplifi
cation. Such a process could obviously lead to continuous magnification – 
provided that reflected and over-reflected waves were in phase so as to avoid 
destructive interference. This is described in detail in Lindzen and Rosenthal 
(1976). 

Before ending this section, a comment is in order on the Helmholtz veloc
ity profile. The discontinuity in U at z = 0 is easily handled by the matching 
conditions (Equation 13.14). However, this ease tends to obscure the fact 
that the velocity discontinuity in the basic state leads to a pair of delta func
tion contributions to d2U0/dz

∗2 at z = 0, and associated contributions to the 
underlying full equation for perturbations (i.e., Equation 10.8). In the next 
section, we will be concerned with issues like changes in sign for d2U0/dz

∗2 . 
It will prove essential to keep in mind the delta function contributions that 
have been effectively disguised in the present treatment. 

13.3	 Instability of meteorological 

disturbances; baroclinic and 

barotropic instability 

Now that we have some idea of the formal approach to linear instability 
theory, we will look at the rather difficult question of whether instability can 
account for the travelling disturbances we saw on weather maps. Naturally, 
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our approach will not be comprehensive, but I will attempt to deal with a 
few aspects which I believe to be particularly central. 

Our starting point in the theoretical analysis of this problem will be the 
quasi-geostrophic equations of Chapter 12. We will consider a basic state 
consisting of a purely zonal flow ū(y, z), 

ū(y, z) = 
−1 ∂Φ̄

(13.25) 
f0 ∂y 

¯ ¯Φ = Φ(y, z) (13.26) 

v̄ ≡ 0. 

¯ ¯If we write Φ = Φ + Φ� (also u = ū+ u�, v = v�, w = w�), (12.57) (or (12.56)) 
upon linearization becomes 

∂ ∂ 1 ∂Φ� 
+ ū0 q� + q̄y = 0, (13.27) 

∂t ∂x f0 ∂x 

v� 

where 

1 
� 
∂2Φ ∂2Φ

� 
∂ 
� 
f0 ∗ ∂Φ

� 

q = + + f + e z∗ e−z (13.28) 
f0 ∂x2 ∂y2 ∂z∗ S ∂z∗ 

1 ∂2Φ̄ ∂ 
� 
f0 ∂Φ̄

� 

q̄ = + f + e z∗ e−z∗ (13.29) 
f0 ∂y2 ∂z∗ S ∂z∗ 

∂q̄ ∂2ū ∂ 
� 
f0

2 ∂ū
� 

∂y 
= −

∂y2 
+ β − e z∗ 

∂z∗ S
e−z∗ 

∂z∗ (13.30) 

1 
� 
∂2Φ� ∂2Φ�� 

∂ 
� 
f0 ∂Φ�� 

q� = + + e z∗ e−z∗ . (13.31) 
f0 ∂x2 ∂y2 ∂z∗ S ∂z∗ 

Traditionally, one has also made the following approximations 

H = constant (13.32) 

z = Hz∗ (13.33) 
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w = Hw∗, (13.34) 

in which case (13.30) becomes 

∂q̄ ∂2ū z/HH
∂ 
�

f0 
e−z/HH 

∂ū
� 

∂y 
= −

∂y2 
+ β − e

∂z S ∂z 

∂2ū ∂ 
� 
f2 ∂ū

� 

=	 e−
∂y2 

+ β − z/H 

∂z N
0
2 
e−z/H 

∂z 

∂2ū 1 f2 ∂ū f2 ∂2ū
=	 −

∂y2 
+ β + 

H N
0

2 ∂z 
−
N

0

2 ∂z2 
. (13.35) 

assuming N2 is independent of z 

Note 

H2 H2	 1 1 
=	 = = . 

S RH(∂T0 + g ) ( g (dT0 + g )) N2 
∂z cp T0 dz cp

Also, 

q� = 
1

(�H
2 Φ�) + ez/H ∂ 

� 

N

f0

2 
e−z/H ∂Φ�� 

. (13.36) 
f0	 ∂z ∂z 

Consistent with this approximation, (12.52) becomes 

∂ ∂ ∂ ∂Φ 
+ uG + vG + wN2 = 0, (13.37) 

∂t ∂x ∂y ∂z 

which becomes, on linearization, 

∂ ∂ ∂Φ� ∂Φ� ∂ū

∂t 
+ ū

∂x ∂z 
−

∂x ∂z 
+ w�N2 = 0. (13.38) 

To summarize, the equation for Φ� that we obtain from (13.27) (using (13.36) 
and (13.34)) is: 

� �	 � �� 
∂ ∂ � 

2 z/H ∂ 
�e−z/H ∂Φ�


∂t 
+ ū

∂x 
�HΦ� + e

∂z ∂z


+	
∂Φ� � 

∂2ū
ez/H ∂ 

� 

�e−z/H ∂ū
�� 

= 0,
∂x 

β −
∂y2 

−
∂z ∂z 

(13.39) 
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where 

� ≡ f0
2/N2 . 

Our lower boundary condition 

w� = 0 at z = 0 (13.40) 

becomes (using (13.38)) 

∂ ∂ ∂Φ� ∂Φ� ∂ū

∂t 
+ ū

∂x ∂z 
−

∂x ∂z 
= 0 at z = 0. (13.41) 

As an upper boundary condition we either assume (13.41) to hold at some 
upper lid or require suitable boundedness (or the radiation condition) as 
z → ∞. 

ik(x−ct)Finally, we restrict ourselves to plane wave solutions of the form e
(recall that for instability c must have a positive imaginary part) so that 
(13.39) and (13.41) become 

∂2Φ� 
z/H ∂ 

�e−z/H ∂Φ�
(ū − c) 

∂y2 
− k2Φ� + e

∂z ∂z 
+ Φ�q̄y = 0 (13.42) 

and


∂Φ� ∂ū
(ū − c)

∂z 
−Φ� 

∂z 
= 0 at z = 0. (13.43) 

Equations 13.42 and 13.43, although linear, are still very hard to solve. In
deed, with few exceptions, only numerical solutions exist. Needless to say, we 
shall not solve (13.42) and (13.43) here. We shall, however, establish some 
general properties of the solutions, and find one very simple solution. 

13.3.1 A necessary condition for instability 

Those readers who have studied fluid mechanics are likely to be familiar with 
Rayleigh’s inflection point theorem. This theorem states that a necessary 
condition for the instability of plane parallel flow ū(y) in a non-rotating, 

u uunstratified fluid is that d
dy

2¯
2 change sign somewhere in the fluid. Now d

dy

2

2 
¯

is simply q̄y in such a fluid. Kuo (1949) extended this result to a rotating 
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barotropic fluid (essentially a fluid where horizontal velocity is independent 
of height) and showed that β − d2ū must change sign. A far more general 

dy2 

result concerning q̄y was obtained from (13.42) and the boundary conditions 
by Charney and Stern (1962). The afore-mentioned results turn out to be 
special cases of the more general result. We will procede to derive Charney 
and Stern’s result. 

As usual, we will assume a channel geometry where Φ� = 0 at y = y1, y2. 
The formal derivation of our condition is quite simple. We divide (13.42) by 
(ū − c), multiply it by e−z/HΦ 

�∗ 

(Φ 
�∗ 

is the complex conjugate of Φ�), and 
integrate over the whole y, z domain: 

� ∞ � y2 
�∗ 

� 
∂2Φ ∂ 

� 
∂Φ

� 

I ≡ 
0 y1 

e−z/H Φ 
∂y2 

� 
− k2Φ� + ez/H 

∂z 
�e−z/H 

∂z 

� 

+ Φ� q̄y 
� 

dydz 
ū− c 

= 
� ∞ � y2 

e−z/H 

� 
∂ 
� 

Φ 
�∗ ∂Φ�� 

∂Φ 
�∗ 

∂Φ� 
�∗ 

Φ� 
0 y1 ∂y ∂y 

− 
∂y ∂y 

− k2Φ 

integrates to zero 

�∗ q̄y 
� 

+ Φ Φ� dydz 
ū− c 

� ∞ � y2 

� 
∂ 
� 

�e−z/HΦ 
�∗ ∂Φ�� 

− �e−z/H ∂Φ 
�∗ 

∂Φ�� 

+ dydz 
0 y1 ∂z ∂z ∂z ∂z 

A 

= 0. 

Using (13.43), the integral of term A above can be rewritten 

� ∞ � y2 
� y2 ∂Φ� �

� 

0 y1 

A dy dz = − 
y1 

�Φ∗
∂z 

dy 
�

�
� 
z=0 
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� y2 
�∗ u/∂z ∂ ̄

= − 
y1 

�Φ Φ�
ū− c 

dy .

z=0 

We then obtain


⎧

⎨ 2
⎫

⎬ 

⎭ 

∂Φ


∂y


2 
∂Φ


∂z


� ∞ � y2 

e−z/H + k2 Φ� 2I
 =
 dydz
−
 |
 |

0 y1 

� y2 ∂ ̄u/∂z 

⎩ 

dy


�
�
�
�
�

=0 z 

� Φ� 2−
 |
 | 
ū− c
y1 

+ 
� 

0 

∞ � 

y1 

y2 

e−z/H |Φ�|2 
ū

q̄

−
y 

c
dydz = 0. 

(13.44) 

Now the real and imaginary parts of (13.44) must each equal zero. The 
imaginary part arises from the last two terms when c is complex. 
Let 

c = cr + ici. 

Then 

1
=

1 
= 
ū− cr + ici 

. 
ū− c ū− cr − ici | ū− c |2 

Also let 

P = 
e−z/H |Φ

2 

�|2 
. |ū− c|

The imaginary part of (13.44) becomes 

� y2 
� ∞ � y2∂ū
 ∂q̄ 


�P dy
 P dydz = 0. (13.45)
+
ci − 
∂z
 0 y1 ∂y y1 z=0 

Next let us define 

1 ∂Φ̄
q̃ = q̄ + � δ(z − 0+), (13.46) 

f0 ∂z 
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where δ is the Dirac delta function. Then (13.45) becomes 

If ci = 0, 

� ∞ � y2 ∂q̃
ci P dydz = 0. (13.47) 

0 y1 ∂y 

� ∞ � y2 ∂q̃
P dydz = 0. (13.48) 

0 y1 ∂y 

But P is positive definite; therefore, there must be some surface (possibly z = 
q0+) where ∂ ˜ changes sign. When ū = ū(y), this reduces to β − ūyy changing 

∂y 

sign, and when β = 0, it reduces to Rayleigh’s inflection point theorem. (Of 
course, it may seem fraudulent to use quasi-geostrophic equations to derive 
Rayleigh’s theorem – but actually it’s okay. Why?) 

The extension of q̄ in (13.46) is reasonable in view of the equivalence of 
the following situations: 

(i) letting ∂
∂z 
ū at z = 0 be equal to ∂

∂z 
ū at z = 0+, and 

(ii) letting ∂
∂z 
ū = 0 at z = 0 and having a δ-function contribution to ∂

∂z

2u 
2 
¯

u ubring ∂
∂z 
¯ at z = 0+ to ∂

∂z 
¯ = 0 at z = 0. 

In the second case, q̃ as defined by (13.46) is actually q̄, the basic pseudo-
potential vorticity. In many cases of practical interest, ūz > 0 and the 
curvature terms in (13.35) are relatively small above the ground, so that 
q̄y > 0 in the bulk of the atmosphere. However, the δ-function contribution 

to ∂
∂z

2u 
2 
¯ makes q̄y < 0 at z = 0+. Thus the surface at which q̄y changes sign is 

just at the ground. 
The condition we have derived is only a necessary condition for insta

bility, but, in practice, when it is satisfied we generally do find instability. 
However, there are important exceptions. 

13.4 The Kelvin-Orr mechanism 

You may have already noticed a certain difference between the convective 
instability problem we dealt with and the two following sections dealing 
with problems in plane-parallel shear flow instability: namely, the under
lying physics of convective instability was clear (heavy fluid on top of light 
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fluid), while the physics underlying shear instability was obscure; it is not 
in the least clear, for example, why changes of potential vorticity gradient 
should lead to instability. This situation is only beginning to be rectified. 

Fortunately, there exists an important example of a shear amplified dis
turbance for which the physics is relatively clear; interestingly, the distur
bance is not a normal mode. We will consider a very simple situation: namely, 
a basic state consisting in plane parallel flow, U(y), in an unbounded, incom
pressible, non-rotating fluid. In this case we have a stream function, ψ, for 
the velocity perturbations, where 

∂ψ 
u = −

∂y 
(13.49) 

∂ψ 
v = . (13.50) 

∂x 

Vorticity, given by 

ξ = v 

= 2ψ (13.51) 

is conserved, so 

∂ξ ∂ξ 
+ U(y) = 0. (13.52) 

∂t ∂x 

For any initial perturbation, 

ξ(x, y, t = 0) = F (x, y), (13.53) 

(13.52) will have a solution 

ξ(x, y, t) = F (x − U(y)t, y); (13.54) 

that is, the original perturbation vorticity is simply carried by the basic 
flow. The streamfunction is obtained by inverting (13.51), while the velocity 
perturbations are obtained from (13.49) and (13.50). The crucial point, thus 
far, is that it is vorticity (rather than momentum) that is conserved. 

For simplicity, we will now take 
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U(y) = Sy, (13.55) 

and 

F (x, y) = A cos(kx). (13.56) 

Equation 13.54 becomes 

ξ = A cos[k(x − Syt)] 

= A{cos(kx) cos(kSty) 

+ sin(kx) sin(kSty)}. (13.57) 

Figure 13.2: A pattern of vertical isolines of vorticity at t = 0 is advected by a constant 
shear. The dashed lines (H) correspond to high values of vorticity while the solid lines (L) 
correspond to low values of vorticity. At some t > 0, the isolines have been rotated in the 
direction of the shear, and the separation between the isolines has been reduced. 

The stream function is easily obtained from (13.57): 

ψ = 
−ξ

, (13.58) 
k2(1 + S2t2)

and 
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∂ψ ASt 
u = −

∂y 
= 
k(1 + S2t2)

sin[k(x − Syt)], (13.59) 

∂ψ A 
v = 

∂x 
= 
k(1 + S2t2)

sin[k(x − Syt)]. (13.60) 

In general, the above solution represents algebraic decay with time. What is 
happening is illustrated in Figure 13.2. 

Phase lines, which are initially vertical, are rotated by the basic shear, 
and this causes the lines to move closer together. Now vorticity is conserved 
and vorticity is made up of derivatives of velocity. So, as the phase lines 
move closer together, velocity amplitudes must decrease so that the velocity 
derivatives will still yield the same vorticity. You might plausibly wonder why 
we are devoting so much attention to a mechanism which leads to decay. But, 
consider next a slightly more general initial perturbation: 

F (x, y) = A cos(kx) cos(my). (13.61) 

Equation 13.61 may be rewritten: 

A 
F (x, y) = (cos(kx −my) + cos(kx + my)). (13.62) 

2

Now the first term on the right-hand side of (13.62) corresponds to (13.57) 
begun at some finite positive time, and will therefore decay. However, the 
second term corresponds to (13.57) begun at some finite negative time (i.e., 
its phase lines are tilted opposite to the basic shear), and this component of 
the initial perturbation will grow with advancing time until the phase lines 
are vertical. After this time, it too will decay; however, for sufficiently large 
m, the total perturbation velocity will grow initially (you will calculate how 
large m must be as an exercise), and it may grow a great deal before eventual 
decay sets in. 

This mechanism was first discovered by Kelvin (1887); Orr (1907) sug
gested that this mechanism might explain why flows that are stable with 
respect to normal mode instabilities still become turbulent. It has been pe
riodically rediscovered since then – but generally dismissed as less effective 
than exponential growth ‘forever’. However, no disturbance really grows 
forever, and if the Orr mechanism leads to enough growth to lead to nonlin
earity it will be important and the ‘eventual’ decay may be irrelevant. Most 
recently, Farrell (1987) has been arguing that the Orr mechanism is a major 
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factor in explosive cyclogenesis, and Lindzen (1988a) has been arguing that 
the Orr mechanism is the underlying physical mechanism for normal mode 
instabilities. Unfortunately, the discussion of these tantalizingly important 
matters is beyond the scope of these notes. 
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13.5 Two-level baroclinic model 

One of the simplest models of baroclinic instability is the two-level model for 
the instability of a basic state ū(z) in a Boussinesq fluid (where ρ = constant, 
but N2 = 0). For such a fluid, (13.83) and (13.84) become 

� �� �

∂ ∂ ∂ ∂vG ∂uG ∂w 
∂t 

+ uG
∂x 

+ vG
∂y ∂x 

− 
∂y 

+ f − f0 
∂z 

= 0 (13.63) 

∂ ∂ ∂ ∂Φ 
+ uG + vG + wN2 = 0. (13.64) 

∂t ∂x ∂y ∂z 

We next seek linearized perturbations, about u = ū(z), of the form eik(x−ct) : 

ik(ū − c) 
∂2Φ� 

+ β
∂Φ� 

= f0
2∂w

� 
(13.65) 

∂x2 ∂x ∂z 

∂Φ� 1 ∂Φ� ∂ ∂Φ̄
ik(ū − c)

∂z 
+ 
f0 ∂x ∂z ∂y 

+w�N2 = 0, (13.66) 

∂Φ� dū
∂x dz 

from which we obtain 

∂w�
ik{−k2(ū − c) + β}Φ� = f0

2 , (13.67) 
∂z 

∂Φ� dū
ik (ū − c)

∂z 
− Φ 

dz 
= −N2 w�. (13.68) 

The solution of (13.67) and (13.68), even for ūz = constant, is quite diffi
cult. However, Phillips (1954) introduced an exceedingly crude difference 
approximation for which easy solutions can be obtained. Phillips considered 
a fluid of depth H where w� = 0 at z = 0 and z = H. The vertical domain is 
discretized by five levels (from which we get the name two-level model): 
ū and Φ� are evaluated at levels 1 and 3, while w� is evaluated at level 2 
(w� = 0 at levels 0 and 4). Applying (13.67) at level 1 we get 

ik{−k2(ū1 − c) + β}Φ1 = f0
2w0 − w2 

= −f0
2 w2 

. (13.69) 
Δz Δz 

Applying (13.68) at level 2 we get 
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�� 
ū1 + ū3 

� 
Φ1 − Φ3 

�
Φ1 + Φ3

�� 
ū1 − ū3

�� 

ik 
2 

− c 
Δz 

− 
2 Δz 

= −N2 w2, 

or 

ik{(ū3 − c)Φ1 − (ū1 − c)Φ3} = −N2Δz w2, 

and evaluating (13.67) at level 3 we get 

(13.70) 

ik{−k2(ū3 − c) + β}Φ3 = f2 
0 

w2 − w4 

Δz 
= f2 

0 

w2 

Δz 
. (13.71) 

We may now use (13.69) and (13.71) to reduce (13.70) to a single equation 
in w2: 

−f0
2w2/Δz 

ik (ū3 − c)
ik{−k2(ū1 − c) + β} 

−(ū1 − c)
ik{−k

f
2

0
2 

(¯

w

u3

2/

−
Δ

c

z 
) + β} 

� 

= −N2Δzw2, 

or 

{(ū3 − c)(−k2(ū3 − c) + β) + (ū1 − c)(−k2(ū1 − c) + β)} 
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= λ2(−k2(ū1 − c) + β)(−k2(ū3 − c) + β), (13.72) 

where 

λ2 ≡ N2 Δ

f

2

2 

z
. 

0 

(It should be a matter of some concern that the fundamental horizontal 
scale length in this problem, λ, depends on the vertical interval, Δz, which is 
simply a property of our numerical procedure.) Equation 13.72 is a quadratic 
equation in c, which after some manipulation, may be rewritten 

c 2 {2k2 + λ2k4 } + c{−(4k2 + 2λ2k4)uM + 2β(1 + k2λ2)} 

+ {uM
2 (2k2 + λ2k4) + uT

2 (2k2 − λ2k4) 

− 2uMβ(1 + k2λ2) + β2λ2 } = 0, (13.73) 

where 

ū1 + ū3 
uM = (13.74) 

2 

uT = 
ū1 − ū3 

. (13.75) 
2 

Solving (13.73) for c we get 

β(1 + k2λ2) 
c = uM −

(2k2 + λ2k4) 
� �1/2

β2 (2 − λ2k2) 
T± 

k4(2 + λ2k2)2 
− u 2 

(2 + λ2k2) 
. (13.76) 

≡δ1/2 

We will have instability when δ < 0; that is, when 

β2 

uT 
2 > . (13.77) 

k4(4 − λ4k4) 
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Figure 13.3: Neutral stability curve for the two-level baroclinic model. 

The instability diagram for this problem is shown in Figure 13.3. The mini
mum value of uT 

2 needed for instability is 

β2λ4 

u 2 = . (13.78) T min 4 

Equation 13.78 suggests that a minimum shear is needed for instability 
whereas Subsection 13.3.1 suggested that instability could exist for any finite 
shear, however small. Actually (13.78) is consistent with our earlier result. 
Note that for (13.63) and (13.64), 

f2 d2ū
q̄y = β −

N
0
2 dz2 

. (13.79) 

Now, until recently, it was assumed that the basic flow in the ‘two-level’ 
model corresponded to a constant shear flow characterized by the estimated 
shear at level 2: ū1

Δ
−
z
ū3 . However, a closer study of the ‘two-level’ model shows 

that its basic flow has this shear only at level 2; at levels 0 and 4 the relevant 
basic shear is zero. Thus if we evaluate (13.79) over the upper layer, we get 
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q̄y = β − f0
2 
�

0 − 2
Δ
u
z 
T 
� 

N2 Δz 

2f0
2 uT 

= β + 2 > 0 for uT > 0. 
N2 (Δz)

In the lower layer 

q̄y = 
f0

2 
� 

2
Δ
u
z 
T − 0

� 

β −
N2 Δz 

2f0
2UT 

= .β −
N2 (Δz)

2

In order for q̄y to change sign we must have 

βN2 (Δz)2 βλ2 

uT > = ,
2f0

2 2 

or 

β2λ4 
2 uT > ,

4 

which is precisely what (13.78) says. The difference between the two-level 
model and a continuous fluid stems from the fact that q̄y must be negative 
over a layer of thickness Δz in order to obtain instability in the two-level 
model; in a continuous fluid it suffices for q̄y to be negative over an arbitrarily 
thin layer near the surface. 

13.6 Baroclinic instability and climate 

It was already suggested by Phillips that the atmosphere might be trying to 
achieve baroclinic neutrality, and that this would determine the meridional 
temperature distribution. In terms of a two-level model one gets 



285 Generation of eddies by instability 

∂T̄ f0T0 ∂ū f0T0 βλ
2 

∂y 
= − 

g ∂z 
= − 

g Δz 

2 N2 (Δz)
2 g (∂T̄ + g )f0T0 β (Δz) f0T0 β T0 ∂Z cp= =− 

g Δz f0
2 

− 
g Δz f0

2 

βΔz 
� 
∂T̄ g 

� 

= + . (13.80) 
f0 ∂z cp 

If we take (13.80) to be locally true at each latitude then 

1 ∂T̄ 2Ωcos φ Δz � 
∂T̄ g 

� 

= a + 
a ∂φ 

−
2Ω sin φ ∂z cp 

or (with obvious cancellation) 

∂T̄ cos φ Δz 
� 
∂T̄ g 

� 

∂φ 
= − 

sinφ ∂z 
+ 
cp 

. (13.81) 

¯
If we take Δz 5 km and ∂T ≈ −6.5◦/km, then (13.81) fairly uniformly 

∂z 
≈

T̄underestimates the observed ∂
∂φ 

at the surface by about a factor of 2 for 

φ>̃20◦. This discrepancy becomes worse when one recalls that (13.81) applies 
to level 2 and that the average of ∂T over the whole domain will be less than 

∂φ 
¯

(13.81). On the other hand, (13.81) overestimates ∂
∂φ 
T as one approaches the 

equator. (Indeed (13.81) blows up at φ = 0.) 
Despite these problems, there are a number of reasons not to become 

discouraged with the suggestion that baroclinic neutrality may be relevant 
to climate: 

(i) Recent numerical experiments with a nonlinear two-level model strongly 
suggest that when ∂T for radiative equilibrium exceeds ∂T for baroclinic 

∂φ ∂φ 

neutrality the system approaches baroclinic neutrality. 

(ii) In the tropics we expect ∂T to be determined by the Hadley circulation 
∂φ 

– not by baroclinic instability (viz. (7.35) ). 

(iii) A priori we do not expect the two-level model to be quantitatively 
appropriate to a continuous atmosphere. 
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Figure 13.4: Temperature vs. latitude. Both the observed distribution and the result 
of a Hadley-baroclinic adjustment assuming constant N2 are shown. 

A study by Lindzen and Farrell (1980) led to the following conclusion 
(roughly stated): For a continuous atmosphere with radiative forcing con
fined below some tropopause at z = zB, the appropriate baroclinically neutral 
profile is one where 

∂ 
� 
f2 ∂ū

� 

q̄y = β − ez/H 

N
0
2 
e−z/H = 0 below zB (13.82) 

∂z ∂z 

and where 

ūz = 0 at z = 0 

u(viz. (13.78)). The solution of (13.82) leads to a distribution of ∂
∂z 
¯ at each 

latitude which in turn leads to a distribution of ∂T via the thermal wind re
∂φ 

∂T lation. The baroclinically adjusted 
∂φ B 

is taken to be the density weighted 

average of the distribution of ∂T between z = 0 and z = zB. We may antici
∂φ 

pate that 
� 

∂T 
� 

will come close to observations for φ>̃20◦. Crudely stated, 
∂φ B � 

∂T 
� 

Lindzen and Farrell then took the Hadley-baroclinically adjusted 
∂φ B−H 
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Figure 13.5: Temperature v. latitude. Both the observed distribution and the result of a 
Hadley-baroclinic adjustment allowing for enhanced N2 near the surface at high latitudes 
are shown. 

to be the smaller of ∂T and ∂T . The resulting global distri
∂φ Hadley ∂φ Baroclinic 

bution of ∂T can be integrated to yield T (φ) within an integration constant. 
∂φ 

This constant is chosen so that outgoing radiation integrated over the globe 
equals incoming radiation integrated over the globe. Results are shown in 
Figure 13.4; the Hadley-baroclinic temperature distribution still implies too 
great a heat flux. Lindzen and Farrell then noted that the assumption that 
N2 was constant was not correct. Within a few kilometers of the surface, 
the atmosphere is substantially more stable than average at high latitudes 
– especially over ice-covered surfaces. This feature is readily incorporated1 . 
Doing this, Lindzen and Farrell obtained the adjusted temperatures shown 
in Figure 13.5. The agreement is remarkably good and strongly suggests that 
the observed T (φ) is largely determined by Hadley convection and baroclinic 
neutralization. This result is somewhat surprising insofar as current observa
tions suggest that oceanic currents, stationary waves and transient eddies all 
contribute comparably to the equator–pole heat flux. However, our results 

1Of course one would like a model to predict stability – but the present approach has 
at least a measure of consistency. 
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suggest that baroclinic instability acts as a temperature regulator for the 
whole system – contributing only what is needed, in addition to the contri
butions of other processes to the heat flux, to achieve ‘baroclinic neutrality’. 
This suggests that the climate is largely determined by processes which mix 
potential vorticity – among which processes baroclinic instability is a major 
contributor. These ideas are still in a rather preliminary and controversial 
stage, but support for them exists in numerical experiments with general cir
culation models (Manabe and Strickler, 1965; Manabe and Terpstra, 1974; 
and others) which show that the total equator–pole heat flux is not particu
larly sensitive to the inclusion of mountains, hydrology, and so forth – though 
the makeup of the heat flux, naturally enough, is. At the heart of the above 
problem is the nonlinear evolution of the instabilities we have touched on in 
this chapter. 

13.7 Geometric stabilization 

Before ending this chapter, it may be worth noting that the condition for 
baroclinic neutrality is not the only possible condition. Both Equation 13.77 
and Figure 13.3 suggest an alternative approach to stabilization. Figure 13.3 
clearly shows the existence of a short-wave cutoff for baroclinic instability in 
a 2-level model. Instability disappears if 

k2λ2 

> 1. 
2 

Now, if our fluid is confined within a channel of width L, then we will have 
a meridional wavenumber, �, in addition to the zonal wavenumber, k. Thus, 
k in the above equation, must be replaced by the total wavenumber, K = 
(k2 + �2)1/2, and the above condition becomes 

K2λ2 

> 1. 
2 

Moreover, � ≥ π/L, and, hence, 

K2λ2 (π/L)2λ2 

> > 1. 
2 2 

Thus one might geometrically stabilize the fluid by confining it in a sufficiently 
narrow channel. Similarly, for a fixed L, on could stabilize the fluid by raising 
the upper boundary and thereby increasing λ. 
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The situation is not quite so simple as the above suggests. If β = 0, 
then the continuous problem (as opposed to the 2- level problem) does not 
have a short-wave cutoff. The continuous problem is known as the Charney 
Problem (Charney, 1947). However, a special case of the continuous problem 
wherein β = 0 or, more generally, qy = 0, and where the fluid has an upper 
boundary at a finite height (known as the Eady Problem (Eady, 1947)) does 
have a short-wave cutoff. Lorenz (1962), noting the relevance of the Eady 
Problem to baroclinic instability in a rotating annulus, showed that reducing 
the width of the annulus could stabilize the waves. In the Eady Problem, 
instability arises from the delta-function contributions to qy at the top and 
bottom boundaries. 

As it turns out, baroclinic waves in the atmosphere are meridionally 
confined, not only by the finite extent of the earth, but by the jet like struc
ture of the mean zonal wind (Ioannou and Lindzen, 1986, 1990). Lindzen 
(1992) has suggested that the atmosphere could be stabilized with respect 
to baroclinic instability, while maintaining surface temperature gradients, by 
eliminating qy in the bulk of the troposphere while concentrating qy at some 
upper surface whose height is sufficiently great. This height turns out to 
be of the order of the tropopause. Observations (Hoskins, et al, 1985) do 
indeed suggest that at midlatitudes qy is much smaller in the bulk of the 
troposphere than it is at either the surface or at the tropopause though qy 

in most of the troposphere is still on the order of β. The implications of 
geometric stabilization are still being explored. 

13.8	 Energetics of meteorological 

disturbances 

Before concluding these notes, it probably behooves us to consider the en
ergetics of meteorological disturbances. Discussions of energetics have been 
a standard component of dynamic meteorology for about 50 years. A con
sideration of energetics does offer some insights into dynamics, but it has 
contributed little to the actual solution of problems, and introduces a cer
tain amount of confusion for reasons we will discuss. 

Consistent with the approximations of Section 13.3 we may write the 
quasi-geostrophic equations of motions as follows: 
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∂ ∂ 
∂t 

+ �vG · � (ζG + f) − f0e
z/H 

∂z 
(e−z/Hw) = 0 (13.83) 

∂ 
∂t 

+ �vG · � Φz + N2 w = 0. (13.84) 

Presumably, these equations have an energy integral. To find this integral, 
let’s rewrite (13.83) and (13.84): 

∂ � 2ψt + � · (�vG(� 2ψ + f)) − f0e
z/H 

∂z 
(ez/Hw) = 0 (13.85) 

N2 

ψzt + � (�vGψz) + w = 0, (13.86) · 
f0 

where 

Φ 
.ψ ≡

f0 

(Recall, � �vG = 0.) Now multiply (13.85) by e−z/Hψ:· 

e−z/Hψ� 2ψt + e−z/Hψ� (�vG(� 2ψ + f)) · 

∂ − f0ψ
∂z 

(e−z/Hw) = 0. (13.87) 

Now 

ψ� 2ψt = � · (ψ�ψt) −�ψ · �ψt 

1 ∂ 
= � · (ψ�ψt) −

2 ∂t
(|�ψ|2) 

and 

ψ� (�vG(�2ψ + f)) = � (ψ�vG(�2ψ + f)) · · 
−(�2ψ + f)�v

� G 
�� 
· �ψ 

� 
. 

=0 
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So (13.87) becomes 

∂ 
� 

2
�


∂t 
e−z/H |�

2 

ψ|
= e−z/H� · (ψ�ψt)


+e−z/H� · (ψ�vG(� 2ψ + f)) 

∂ −f0ψ (e−z/Hw). (13.88) 
∂z 

Now integrate (13.88) over y1, y2, over z between 0 and ∞, and over x (re
calling periodicity in x): 

∂ � � � 
1 

∂t 
e−z/H 

2
|�ψ|2dxdydz 

= e−z/H� · (ψ�ψt)dxdydz 

0 because 
� � 

e−z/H ∂uG dxdz|y=y1,y2=0 →
∂t x z 

+ e−z/H� · (ψ�vG(� 2ψ + f))dxdydz 

0 because normal velocities at boundaries =0 →
� � � 

∂ −f0 ψ
∂z 

(e−z/Hw)dxdydz (13.89) 

Clearly, the left hand side of (13.89) is the time rate of change of kinetic 
energy. We turn next to (13.86). Multiply (13.86) by e−z/H 

N
f0

2 ψz: 

f2 f2 

e−z/H 0 ψzψzt + e−z/H 0 ψz� (�vGψz)
N2 N2 

· 

+ f0e
−z/Hψzw = 0. (13.90) 

Now ψz
1 ∂ψzt = 
2 ∂t

(| ψz |2) and 

1 
ψz� · (�vGψz) =

2
� · (�vG|ψz|2). 

So (13.90) becomes 
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∂ 
� 

f2 1 
� 

∂t 
e−z/H 

N
0
2 2

|ψz| 2 

f2 1 
= −e−z/H 

N
0

2 2
� · (�vG|ψz| 2) − f0e

−z/Hψzw. (13.91) 

Integrating (13.91) over x, y, z we get 

∂ � � � 

e−z/H f0
2 1 

∂t N2 2 
| ψz | 2 dxdydz 

� � � f2 1 
= − e−z/h 

N
0
2 2

� · (�vG | ψz |2)dxdydz 

=0 (Why?) 

−f0 ψzwe
−z/H dxdydz. (13.92) 

The left hand side of (13.92) is the time rate of change of something called the 
available potential energy. We will explain what this is in the next section. 

Finally, adding (13.89) and (13.92) we get 

∂ � � � � 
1 1 f2 

� 

∂t 
e−z/H 

2
|�ψ| 2 +

2N
0
2
|ψz| 2 dxdydz 

� � � 
∂ 

= −f0 (ψwe−z/H)dxdydz . 
∂z 

=0 (Why?) 

(13.93) 

The quantity 

1 1 f2 

E = 2 0 2 

2
|�ψ| +

2N2
|ψz| (13.94) 
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is the total energy per unit mass. 
Energy budgets for the atmosphere and oceans are studied at great 

length, but the interpretation of such studies must be approached cautiously. 
For example, if we divide our fields into zonally averaged parts and eddies, 

¯ψ = ψ(y, z, t) + ψ�(x, y, z, t) 

T = T̄ + T � 

w = w̄ + w� 

¯ζ = ζ + ζ �, 

¯ where ( ) ≡ zonal average of ( ), we can obtain, after modest amounts of 
algebra2 , 

⎧
�2
⎫


∂ � y2 
� ∞ 

e−z/H 
⎨ 1

(�ψ�)2 +
1 f0

2 
� 
∂ψ� ⎬


dydz 
∂t y1 0 ⎩ 2 2N2 ∂z ⎭ 

= 
� 

y1 

y2 
� 

0 

∞ 
e−z/Hψx

� ψy
� uy dydz − 

� 

y1 

y2 
� 

0 

∞ 

N

f0
2

2 
ψx

� ψz
� ψzye

−z/Hdydz 

= − 
� 

y1 

y2 
� 

0 

∞ 
e−z/Hu�v� uy dydz 

� y2 
� ∞ g/T0 

(< ∂T g v
�T � T ye−z/H dydz, (13.95) − 

y1 0 
∂z 
> + 

cp 
) 

where T0 = average of T over whole fluid, and < T > = horizontal average 
of T . 

2The procedure consists in averaging Equations 13.83 and 13.84 with respect to x, 
subtracting these averages from (13.83) and (13.84), multiplying the resulting equations 
by −e−z/Hψ� and (f2/N2)e−z/Hψz

� , respectively, adding the two resulting equations, and 0 

integrating over the fluid volume. The reader should go through the derivation of both 
Equations 13.95 and 13.96. 
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It can also be shown that 

∂ � y2 
� ∞ 

e−z/H 

�

1 1 f0
2 

(ψz)
2 

� 

dydz 
∂t y1 0 2

(�ψ)2 +
2N2

� y2 

= 
� ∞ 

e−z/Hu�v� uy dydz 
y1 0 

+ 
� y2 

� ∞ 

(< ∂T 

g/T0 
g v

�T � T ye−z/H dydz. (13.96) 
y1 0 

∂z 
> + 

cp 
) 

Equations 13.95 and 13.96, together, seem to tell us that the sum of the 
energy in the zonally average flow and the eddies is conserved, and that 
the growth of eddies occurs at the expense of the mean flow through the 
action of horizontal eddy stresses on ūy and horizontal eddy heat fluxes on 
T̄y. Although these remarks are subject to interpretation (and we will discuss 
them later) they do establish the criteria for eddy growth to be energetically 
consistent; in particular they state that the energy of the zonally averaged 
flow can only be tapped if ūy �= 0 and/or T̄y �= 0 (in the above quasi-
Boussinesq system). 

It is, however, sometimes concluded that instabilities are caused by ūy 

and/or T̄y. This is not, in general, true. To be sure, if ūy = T̄y = 0 there can 
be no unstable eddies. In such a case, the necessary condition for instablility 
given in Subsection 13.3.1 would not be satisfied. However, this condition 
can also fail to be satisfied when ūy =� 0 and/or T̄y =� 0. 

¯Equation 13.95 does tell us that a growing eddy will act to reduce Ty 

and ūy. The first term on the right hand side of (13.95) is called a barotropic 
conversion while the second term is called a baroclinic conversion. Instabili
ties of flows where ūy = 0 are called baroclinic instablilities, while instabilities 
where T̄y = 0 (and ūz = 0) are called barotropic instabilities. However, as we 
saw in Subsection 13.3.1 both instabilities depend on the meridional gradient 
of potential vorticity. 

13.9 Available potential energy 

The quantity available potential energy is at first sight a bit strange. We 
expect the conservation of kinetic + potential + internal energy. Now the 
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last two items can be written as 

P = gz ρ dzdxdy (13.97) 

and 

I = cvT ρ dzdxdy. (13.98) 

The former can be rewritten 

� � � � � � p0 
� � � ∞

P = gz ρ dzdxdy = zdp = pdz 
0 0 

� � � 
R 

= RTρdz = I, (13.99) 
cv 

and 

I + P = total potential energy =TPE 
cv 

� � � 

= (1 + ) RT ρ dzdxdy 
R 

= cp T ρ dzdxdy 

5 
� � �


=
 c 2 ρ dzdxdy, (13.100) 
2 

where c = the sound speed. Clearly TPE � K. Noticing this disparity, 
Margules (1903) pointed out that without deviations from horizontal strati
fication no TPE is available to K (assuming static stability). Lorenz (1955) 
showed that what we have called available potential energy (APE) is that 
portion of TPE which is available to K. 

Lorenz’s analysis ran roughly as follows (ignoring horizontal integrals)3: 

1+κdΘ,TPE = 
cp 
� p0 

Tdp = (1 + κ)−1 cpp−0 
κ 
� ∞ 

p 
g 0 g 0 

where T = Θ pκp−0 
κ and Θ is the potential temperature. 

3We are not particularly concerned with details since we are merely seeking an inter
pretation of APE. 



296 Dynamics in Atmospheric Physics 

He then noted that the minimum TPE which motions would produce 
would be achieved if p =< p > everywhere (<>= horizontal average); that 
is, 

TPEmin = (1 + κ)−1 cp 
0 

� ∞ 
p−κ < p >1+κ dΘ. 

g 0 

Now let 

< APE > = < TPE − TPEmin > 

= (1 + κ)−1 cpp−κ 
� ∞

(< p1+κ > − < p >1+κ)dΘ0 g 0 

and let 

p = < p > +p̃ 

1+κ 1+κ 

� 
p̃ κ(1 + κ) p̃2 

� 

p = < p > 1 + (1 + κ) + + . . . 
< p > 2! < p >2 

and 

< APE >= 0 

1 
κ
cp
p−κ 

� ∞
< p >1+κ 

� 
p̃2 

� 

dΘ (13.101) 
2 g 0 < p >2 

(i.e., < APE > depends on the variance of pressure over isentropic surfaces). 
If one wishes to deal with isobaric rather than isentropic surfaces we may use 

p̃ ≈ ∂p 
θ̃

∂θ 

(where θ̃ is the deviation of θ from < θ > on isobaric surfaces) to rewrite 
(13.101) as 

< APE > 
1 cp 

� p0 

� 
∂ < θ > 

�−1 � 
θ̃2 

� 

≈
2 
κ
g
p−κ 

0 
< p >−(1−κ)< θ >2 − 

∂p < θ >2 
dp. 0 
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Now 

∂θ cp ∂T g 
∂p 

= −κ
g ∂z 

+ 
cp 

. 

Also 

T̃

θ 
≈
T 

on isobaric surfaces. So 

1 
� p0 1 

� 
T̃ 2 

� 

< APE > = 
2	 0 

< T > ∂T g ) < T >2 
dp 

(�
∂z 
� + 

cp

θ̃ 

=
1 
� ∞

ρ
g 

(�
∂z 
�
1

+ 
c
g 

p 

T 2�dz, 
∂T )

� ˜
2 0 < T > 

which is what we found in Section 13.8. 

13.10 Some things about energy to think about 

For many people there is something comforting about energetics. Yet as we 
have seen, it is at best a tool to establish consistency rather than causality. 
The problems go further than this. For example, energy is not Galilean 
invariant. Clearly, the kinetic energy depends on the frame of reference in 
which we are measuring velocity. In addition, the quantity in (13.96) whose 
time derivative is being taken is not the full eddy contribution to energy. You 
can easily prove this for yourself. Take (13.94) (which is the total energy), 
and substitute ψ̄+ψ� for ψ. The eddy contributions include cross terms which 
are linear in ψ� as well as the quadratic terms in (13.96). To be sure, these 
linear terms go to zero when averaged over x, but they are nonetheless part 
of the eddy energy, and their presence in some problems can lead to eddy 
energy not being positive-definite. This, in itself, is not as disturbing as it 
might appear at first sight. For example, when an eddy with a phase speed 
smaller than the mean flow is absorbed and reduces the mean flow speed, 
shouldn’t we think of the eddy before it was absorbed as having negative 
energy insofar as its absorption led to the reduction of the mean kinetic 
energy. It should also be clear that this whole process would depend on the 
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frame of reference in which speed was measured. What then is the quadratic 
quantity in (13.96)? Well, it is at least a pretty good measure of the overall 
magnitude of the eddies. 

It is likely that the above is almost certain to be more confusing than 
edifying for many readers. However, it was merely meant to give you some
thing to think about. In doing so you might actually avoid some confusion 
later on. 


