
Chapter 11 

Rossby waves 

Supplemental reading: 

Pedlosky1 (1979), sections 3.1–3 

11.1 Shallow water equations 

When considering the general problem of linearized oscillations in a static, 
arbitrarily stratified atmosphere (or ocean for that matter), we find that there 
is separability of latitude and altitude dependence (in spherical coordinates). 
For simplicity in what follows we will consider a β plane instead of a spherical 
surface. As on a sphere, our equations naturally divide into two sets. 

The first set consists in the following three equations: 
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1Pedlosky offers very detailed explorations of the topics we are skimming. Don’t get 
too discouraged in reading this book. It was the basis for a five trimester course at the 
University of Chicago 
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The second set consists in the following two equations: 

iσ dw∗
−
ghn 

Φ� + 
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n − w∗ = 0 (11.4) n n 

and 

dΦ� �

dT0 RT0 

� 

iσ n + w∗R + = κJn. (11.5) 
dz∗ n dz∗ cp 

The first three equations can be combined to form Laplace’s Tidal Equation 
(for a sphere) or its equivalent on the β plane. 

The second set determines vertical structure – leading to a vertical struc
ture equation 
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where 

wn 
∗ = e z 

∗/2 w̃n. (11.7) 

At a horizontal rigid lower boundary, the boundary condition on w̃n is 

dw̃n 
� 
H 1

� 

dz∗ 
+ 

hn 

−
2 

w̃n = 0 at z∗ = 0. (11.8) 

At a free upper surface we would require 

w̃n = 0 at z∗ = H∗. (11.9) 

For an unbounded atmosphere we require boundedness and/or the radiation 
condition. 

In the case of forced oscillations, the forcing determines the frequency 
and zonal wavenumber, Laplace’s Tidal Equation defines and eigenfunction
eigenvalue problem where the eigenfunctions are known as Hough Functions 
and the eigenvalues are the equivalent depths associated with different merid
ional structures. The forcing, J , is then expanded in terms of these Hough 
Functions, and the vertical structure is used to solve for the vertical structure 
pertaining to each Hough mode. 

For free oscillations, on the other hand, we solve (11.6) subject to the 
boundary conditions for J = 0. This yields the equivalent depths of the 
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Figure 11.1: Shallow water geometry. 

atmosphere (or ocean). For these depths we then solve (11.1)–(11.3) where 
frequency rather than h is the eigenvalue. The resulting modes are known 
as free oscillations. 

It must be emphasized that the eigenfunctions of (11.6) do not, in gen
eral, form a complete set. For example, for a semi-infinite atmosphere with 
an isothermal basic state there exists a single equivalent depth for the atmo
sphere. This is sometimes referred to as the barotropic mode. However, the 
so called baroclinic modes are usually artifacts resulting from the artificial 
presence of a reflecting lid. In general, 

h = γH. (11.10) 

We have also shown that for a shallow fluid with a free surface and N2 = 0 
(i.e., dH + κH ≡ 0) there is also a single equivalent depth 

dz∗ 

h = = = depth of unperturbed fluid. (11.11) H∗H H
Under the latter circumstances, (11.1)–(11.3) are known as the shallow water 
equations. The point is that for a shallow fluid u� and v� are essentially 
independent of z, and Φ is just g surface displacement. Equation 11.3 ×
can then be directly interpreted as the continuity equation. This is readily 
seen if we ignore y-variation. Referring to Figure 11.1 we see that as Δx → 
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H∂u� 

+ ∂z� 0, 
∂x ∂t 

= 0. Under these circumstances there is no further need for 
the vertical structure equation. What our analysis shows is that the shallow 
water equations are always appropriate to hydrostatic oscillations on a static 
basic state – subject to the reinterpretation of h. Our analysis, therefore, 
serves to justify and generalize the use of the shallow water equations. 

The shallow water equations are used as model equations in both me
teorology and oceanography. In most applications they are not considered 
approximations. We shall make extensive use of these equations in the fol
lowing two subsections where we investigate the effects of f , the Coriolis 
parameter, varying with y. 

It should be remembered, however, that once we obtain a relation among 
frequency, horizontal wavenumbers, and the depth of the ‘shallow water’, we 
are always free to reinterpret the depth as an equivalent depth – and to solve 
for the depth in terms of the other parameters in order to apply the results 
to problems of forced rather than free oscillations. 

11.2 Rossby waves 

When f is constant and (11.1)–(11.3) are applied to a channel geometry, 
they describe easterly and westerly gravity waves modified by rotation. We 
will now allow f to vary in the same way that density varies in a Boussinesq 
fluid; that is, we will take f to be constant unless it is differentiated – in 
which case we will take df = β = constant. This is known as the β-plane 

dy 

approximation and is, in fact, due to Rossby. Rossby intuitively realized that 
for large-scale meteorological systems the first modification on a sphere to the 
f -plane equations arises from the variation of f with latitude. Subsequently, 
scaling analysis has been used to more rigorously justify this approximation. 

Our starting point will be (11.1)–(11.3). With variable f , it will prove 
more convenient to reduce (11.1)-(11.3) to a single equation in v� rather than 
Φ�. For free oscillations it doesn’t matter which field we solve for. Eliminating 
u� between (11.1) and (11.2) we get 

∂Φ�
(f2 − σ2)v� = −iσ 

∂y 
+ ikfΦ�. (11.12) 

Similarly, eliminating u� between (11.1) and (11.3) yields: 
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∂v� σ2 

iσ 
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We next operate on (11.13) with (−iσ ∂ + ikf) to get 
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where the terms with numbered underbraces cancel. Finally, (dividing by 
σ2) we get 

− k2 v� = 0. (11.14) 
∂2v
 σ2 − f2kβ


+ +

∂y2 σ gh


(It turns out that we also have Kelvin wave solutions for which v� 0. ≡
These are described at the end of this chapter.) If we again adopt a channel 
geometry where 

v� = 0 at y = 0, d, (11.15) 

then (11.14) has solutions 

nπy 
v� = sin ,

d 
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and (11.14) becomes 

�
nπ �2 

+ 

� 
kβ 

+ 
σ2 − f2 

� 

= 0. (11.16) − 
d σ gh 

− k2 

Recall that for free oscillations, h is given, and (11.16) is solved for σ, whereas 
in a forced problem, σ and k are given and (11.16) is solved for h. Although 
we shall return to free oscillations shortly, some useful insights can be gotten 
by looking at (11.16) as an equation for h: 

σ2 − f2 σ2 − f2 

gh = 
kβ 

= 
�2 β 

, (11.17) 
(�2 + k2) − 

σ k2{
k2 + 1 −

σk
}

where � = nπ .
d 

In the absence of β, oscillations for which σ2 < f2 cannot propagate 
vertically (propagation requires 0 < h <H˜ ; for σ2 < f2 , h is negative). When 
β is included, (11.17) shows that this is no longer strictly true. For easterly 
waves (where σ and k have the same sign) and sufficiently small σ, vertical 
propagation is again possible. The resulting waves are called internal Rossby 
waves. Some quantitative estimates will help us determine the relevant scales 
for such waves. Let us take our β-plane to be centered at 45◦ latitude. Then 

f = 2Ω sin φ ≈ 10−4 sec−1 

df 2Ω cos φ 10−4 sec−1 

β = = ,
dy a 

≈ 
a 

where a = Earth’s radius ≈ 6400 km. 
For convenience let’s take n = 1 and d = a. Then 

� 
π �2 

�2 .≈ 
a 

Also 

s s
√

2 
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a cosφ a 
and 

2s2 

k2 = . 
a2 
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From (11.17) we see that positive equivalent depths are possible for 

β/k f/
√

2s f 
0 < σ < 

1 + 
k
�2
2 

=
1 + 1

2
(π

s 
)2 

≤
2π
. (11.18) 

(The reader should derive the last inequality.) In other words, Rossby waves 
are associated with periods for which σ2 � f2 . 

11.2.1 Planetary scale internal stationary waves 

There is a quick application of the above. Just as flow over individual moun
tains is a major forcing of internal gravity waves, so too is flow over larger-
scale surface features (the Tibetan Plateau, for example) a major forcing of 
internal Rossby waves. Now as we saw in Chapter 10 the inclusion of a basic 
flow can substantially complicate matters (indeed, if U0 varies with z then, 
at least on a rotating sphere, we lose separability). However, in the trivial 
instance where U0 = constant, the primary effect is only to replace σ with 
σ + kU0. (The effect on the lower boundary condition can be more compli
cated – but we will ignore this.) Now for stationary waves σ = 0 and (11.18) 
becomes 

f/
√

2s 
0 < kU0 < 

1 + 1
2
(π

s 
)2 

or 

fa fa/2 
0 < U0 < 

2s2(1 + 1(π )2)
= 
s2 + π

2 ≡ Utrap, (11.19) 
2 s 2 

where 

54m/s for s = 1 
Utrap = 36m/s for s = 2 

23m/s for s = 3, 

Only sufficiently weak westerlies permit stationary wave propagation. We see 
from (11.19) that for tropospheric winds stationary wavenumbers three and 
greater will not readily propagate into the stratosphere thus accounting for 
the predominance of wavenumbers one and two in the winter stratosphere. 
We also see that the summer stratospheric easterlies will effectively block 
the propagation of all stationary waves accounting for the observed zonal 
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character of the summer stratospheric circulation. These results were first 
noted by Charney and Drazin (1961). 

11.2.2 Free oscillations 

Let us now return to free oscillations. Rewriting (11.16) we get 

kβ σ2 − f2 
� � 

nπ �2
� 

σ 
+ 

gh 
− k2 + 

d 
= 0. (11.20) 

Equation 11.20 is cubic in σ. We may anticipate that the three roots will 
correspond to two gravity waves and a Rossby wave. In general, gravity 
wave frequencies (for positive h) will exceed f so the term kβ will be negli

σ 

gible. Similarly, for Rossby waves σ2 f2 . Thus (11.20) has the following 
approximate solutions: 

� �2
��

nπ 
σ2 ≈ gh k2 + + f2 (11.21) 

d 

and


kβ f2 �
nπ �2 

= + k2 + 
σ gh d 

or 

kβ 
σ = . (11.22) 

k2 + (nπ )2 + f
2 

d gh 

In contrast to gravity waves, which can have easterly and westerly phase 
speeds, Rossby waves always have easterly phase speed (relative to U0). 
East–west asymmetry is always a characteristic of motions for which β is 
important. 

Several properties of (11.22) are worth noting: 

(i) σ has a maximum value for a particular value of k (which you will 
work out as an exercise). Pedlosky (1979) has an elegant explanation 
of this which we shall go over as soon as we develop some theorems on 
vorticity conservation. 
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(ii) With a constant zonal flow we can replace σ with σ +kU0. Also c = σ
k
.−

(11.22) becomes 

β 
c = . (11.23) U0 −

k2 + (nπ )2 + f
2 

d gh 

Note that as (k2 + (nπ )2) gets larger the Rossby wave moves more and 
d 

more nearly with the basic flow U0. This is completely consistent with 
observations. 

(iii) The velocity fields associated with Rossby waves are almost in geostrophic 
balance. Nonetheless, the outright assumption of geostrophy would not 
permit us to evaluate the time evolution of Rossby waves. The devel
opment of an appropriate approximate set of equations which exploit 
geostrophy but still describe Rossby waves will be one of our tasks. 

(iv) The dispersive properties of Rossby waves clearly suggests that it is 
Rossby waves and not gravity waves which describe large-scale meteo
rological systems. 

11.3	 Remark on Kelvin waves: The case of 

v
� 0.≡

The solutions in Section 2 assume v� = 0. We here consider the situation 
where v� 0. There exists a solution in this case known as a Kelvin wave. ≡
As an exercise you will derive the properties of Kelvin waves on what is 
known as an equatorial β -plane (where f = βy). Here we will take f = f0. 
Equations 11.1–11.3 become 

iσu� = −ikΦ�	 (11.24) 

∂Φ�
fu� = −

∂y	
(11.25) 

and 

iσ 
iku� = −

gH 
Φ�.	 (11.26) 
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From (11.24) and (11.26) we get 

σ2 

= gH, (11.27) 
k2 

while from (11.24) and (11.25) we get 

∂Φ� k 
∂y 

− f0
σ 

Φ� = 0. (11.28) 

The solution to (11.28) is 

k
σΦ� = Cef0( )y .


Note that for kσ < 0 (i.e., westerly or eastward propagating waves) ampli
tudes decay away from the boundary at y = 0, while for k/σ > 0 (i.e., easterly 
or westward propagating waves) amplitudes decay away from the boundary 
at y = d. In a closed basin, Kelvin waves travel around the boundary of the 
basin in a counterclockwise direction (when f0 > 0). Kelvin waves satisfy the 
dispersion relation for a gravity wave in the absence of rotation; at the same 
time, the Kelvin wave’s horizontal velocity field is in geostophic balance. 


