12.005 Lecture Notes 15

Elasticity

So far:

Stress \rightarrow angle of repose vs accretionary wedge

Strain \rightarrow reaction to stress \rightarrow but how?

Constitutive relations

$$\tau_{ij} = \tau_{ij} \left(\varepsilon_{kl} \right); \quad \varepsilon_{ij} = \varepsilon_{ij} \left(\tau_{kl} \right)$$

For example,

Elasticity

Isotropic

Anisotropic

Viscous flow

Isotropic

Anisotropic

Power law creep

Viscoelasticity

Trade offs:

simplicity	\leftrightarrow	realism
constant		variable
isotropic		anisotropic
elastic, viscous		viscoelastic
history		history dependent
independent		

Tensors

Most physical quantities that are important in continuum mechanics like temperature, force, and stress can be represented by a tensor. Temperature can be specified by stating a single numerical value called a scalar and is called a zeroth-order tensor. A force, however, must be specified by stating both a magnitude and direction. It is an example of a first-order tensor. Specifying a stress is even more complicated and requires stating a magnitude and two directions—the direction of a force vector and the direction of the normal vector to the plane on which the force acts. Stresses are represented by secondorder tensors.

Tensors are quantities independent of coordinate system.

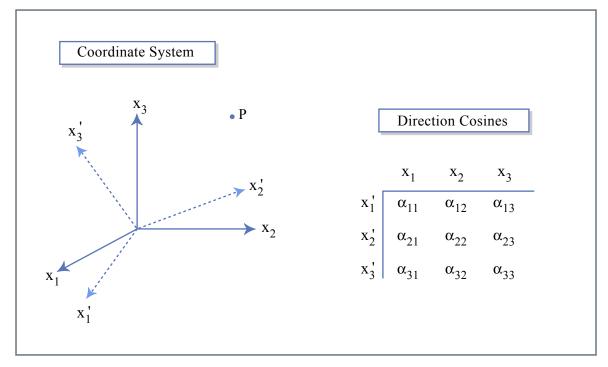


Figure 15.1

$$\alpha_{ii} = \cos \phi_{ii}$$

where ϕ_{ij} is the angle of primed to original.

$$x_{i}' = \alpha_{ij}x_{j}$$
$$x_{i} = \alpha_{ji}x_{j}'$$
$$\alpha_{ij} = \frac{\partial x_{i}'}{\partial x_{i}} = \frac{\partial x_{j}}{\partial x_{i}'}$$

Tensors:

- a. 0th order (scalar) quantity dependent only on position
- b. 1st order (3¹ components) $A_i' = \alpha_{ii} A_i$
- c. 2^{nd} order ($3^2 = 9$ components) $A_{ij}' = \alpha_{is} \alpha_{jk} A_{sk}$
- d. 3^{rd} order ($3^3 = 27$ components) $A_{ijk}' = \alpha_{is} \alpha_{jt} \alpha_{kp} A_{stp}$
- e. 4th order (3⁴ = 81 components) $A_{ijkl}' = \alpha_{is} \alpha_{jt} \alpha_{kp} \alpha_{lq} A_{stpq}$

Linear Elastic Solid

 $\tau_{ij} = c_{ijkl} e_{kl}$ $c_{ijkl} \text{ is elastic modulus tensor}$ $c_{ijkl} = \underline{\text{constants}} \ (\neq \text{history}, \neq \text{displacement}, \neq \text{time})$

 $3^4 = 81$ components

 $\tau_{ij} = \tau_{ji}, \ e_{ij} = e_{ji} \rightarrow \text{cuts to } 36$

Strain Energy

$$U = \frac{1}{2}\tau_{ij}e_{ij} \Longrightarrow \tau_{ij} = \frac{\partial U}{\partial e_{ij}}$$

Write in terms of powers of e_{ij}

$$U = \alpha + \beta_{ij} e_{ij} + \gamma_{ijkl} e_{ij} e_{kl}$$

0 (to avoid spontaneous expansion, contraction)

$$\frac{\partial U}{\partial e_{ij}} = \left(\gamma_{ijkl} + \gamma_{klij}\right) e_{kl}$$

$$\downarrow$$

 $c_{ijkl} = c_{klij} \Longrightarrow 21$ individual components.

21 components – data fitting – ugh! Lots of available information, but lots of hard work.

Reality – 21 components (triclinic) \downarrow

Simplicity – derive in homework

Isotropic

$$c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right)$$

 λ and μ are Lame parameters.

$$\tau_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij}$$

Can also express

$$e_{ij} = S_{ijkl} \tau_{kl}$$

$$\uparrow$$

Compliance tensor

Aside

$$e_{11} = S_{1132}\tau_{32}$$

 \uparrow
triclinic, trigonal

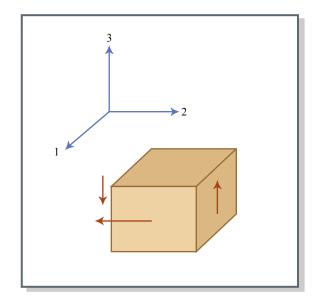


Figure 15.2

Figure by MIT OCW.

Sheer leads to lengthening.

Isotropic – can relate c_{ijkl} and S_{ijkl} directly $\tau_{ii} = \lambda e_{kk} \delta_{ii} + 2\mu e_{ii} = (3\lambda + 2\mu) e_{ii}$ $2\mu e_{ij} = \tau_{ij} - \frac{\lambda \delta_{ij}}{2\mu + 3\lambda} \tau_{kk}$

Conventional moduli:

1. Hydrostatic comp.

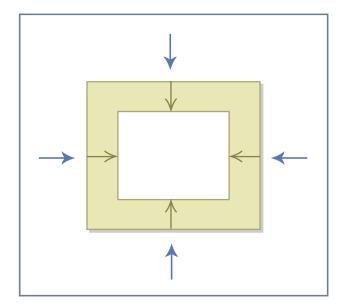


Figure 15.3 Figure by MIT OCW.

$$\tau_{ij} = -p\delta_{ij}$$

$$\tau_{ii} = -p\delta_{ii} = 3\lambda e_{kk} + 2\mu e_{ii}$$

$$= -3p = (3\lambda + 2\mu)e_{ii}$$

$$-\frac{p}{e_{ii}} = -\frac{VP}{\Delta V} \equiv K$$

where $K = \lambda + 2 / 3\mu$ is bulk modulus.

2. Uniaxial stress

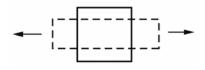


Figure by MIT OCW.

$$\tau_{11} = T$$

other $\tau_{ij} = 0$

$$2\mu e_1 = T - \frac{\lambda}{2\mu + 3\lambda}T$$
$$\frac{T}{e_1} \equiv E \text{ (sometimes } Y)$$
where $E = \frac{\mu(2\mu + 3\lambda)}{\mu + \lambda}$ is Young's modulus

Hook's law:

$$T = Ee$$

$$\frac{e_{22}}{e_{11}} = \frac{e_{33}}{e_{11}} \equiv -v$$
 This is called Poisson's ratio.
$$2\mu e_{22} = -\frac{\lambda}{2\mu + 3\lambda} \tau_{11} \implies v = \frac{\lambda}{2(\mu + \lambda)}$$

$$\theta = e_{11} + e_{22} + e_{33} = e_{11}(1 - 2v)$$
fluid: $\mu \to 0 \implies v \to \frac{1}{2}$

most material: v = 0.2 - 0.3

$$\nu = \frac{1}{4} \implies \lambda = \mu$$
 It is Poisson solid

steel: v; 0.3-0.33

seismically measured

$$v_p = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$
 $v_s = \sqrt{\frac{\mu}{\rho}}$

compare $v_p, v_s \rightarrow v \rightarrow$ discriminate rock types

3. Simple shear

 $\tau_{12} = \tau_{21} = \tau$ $\tau_{12} = 2\mu e_{12} = 2Ge_{12}$

where G is shear modulus.

Note: Among λ , μ , K, ν , E, G only two are independent.

Useful forms:

$$\tau_{11} = (\lambda + 2\mu)e_{11} + \lambda e_{22} + \lambda e_{33}$$

$$\tau_{22} = \lambda e_{11} + (\lambda + 2\mu)e_{22} + \lambda e_{33}$$

$$\tau_{33} = \lambda e_{11} + \lambda e_{22} + (\lambda + 2\mu)e_{33}$$

or

$$e_{11} = \frac{\tau_{11}}{E} - \frac{\nu\tau_{22}}{E} - \frac{\nu\tau_{33}}{E}$$
$$e_{22} = -\frac{\nu\tau_{11}}{E} + \frac{\tau_{22}}{E} - \frac{\nu\tau_{33}}{E}$$
$$e_{33} = -\frac{\nu\tau_{11}}{E} - \frac{\nu\tau_{22}}{E} + \frac{\tau_{33}}{E}$$