AN INTRODUCTION TO INTELLIGENT TRANSPORTATION SYSTEMS

1.212 SPRING 2005

Professor Joseph M. Sussman

Mon/Wed 2:30 -4:00

BLOCK 1

(Lectures 2, 3)

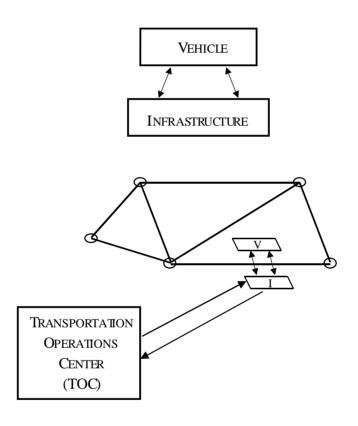
INTRODUCTION TO ITS

Basic Concepts

Continued

SPEAKER: Joseph M. Sussman

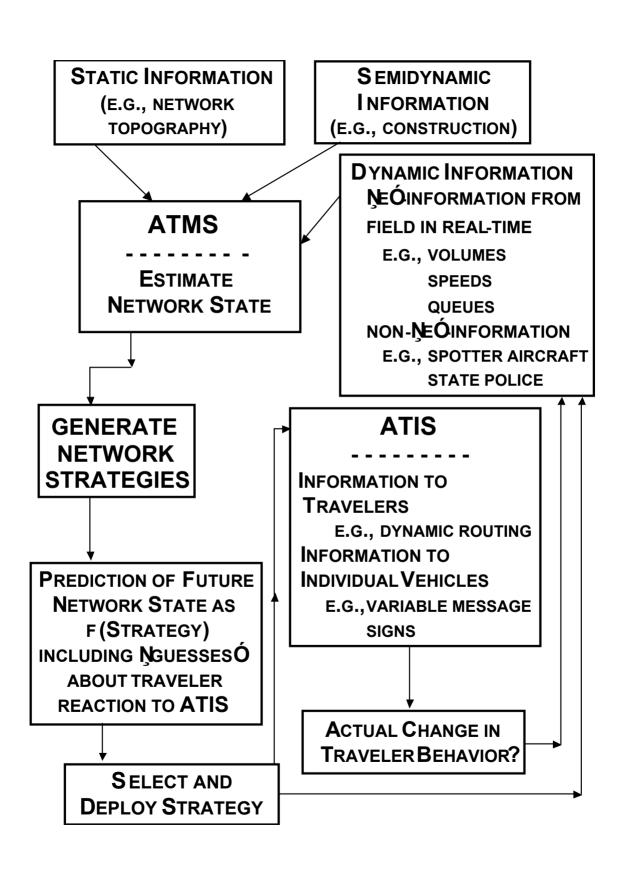
MIT


INSTITUTIONAL ISSUES

- Privacy/enforcement
- ◆ Anti-trust
- ♦ Who is in Charge?
 - ◆ Public/Private Partnership
- International Cooperation
- ◆ Tort Liability
- Procurement
- Marketplace

INSTITUTIONAL ISSUES

- Interagency Coordination and Cooperation
 - Metropolitan Area Traffic Management
 - Federal and State Departments and Agencies
- Adaptation of Existing Posers and Organizational Forms
- Collaborative vs. Adversarial Approaches
- Public/Private Partnership Agreements


INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

ATMS - - ADVANCED TRANSPORTATION MANAGEMENT SYSTEM
(OPERATOR)

ATIS - - ADVANCED TRAVELER INFORMATION SYSTEM (CUSTOMER)

DISCUSSION: What specific actions can ATMS take to improve network performance?

ITS Subsystems

ATMS	Advanced Transportation Management Systems	Network management, including incident management, traffic light control, electronic toll collection, congestion prediction and congestion- ameliorating strategies.
ATIS	Advanced Traveler Information Systems	Information provided to travelers pre-trip and during the trip in the vehicle. ATMS helps provide real-time network information.
AVCS	Advanced Vehicle Control Systems	A set of technologies designed to enhance driver control and vehicle safety. This ranges up to Automated Highway Systems (AHS), where the driver cedes all control to the system.

ITS Subsystems (Continued)

CVO	Commercial Vehicle Operations	Technologies to enhance commercial fleet productivity, including weigh-in- motion (WIM), pre- clearance procedures, electronic log books, interstate
APTS	Advanced Public Transportation Systems	interstate coordination. Passenger information and technologies to enhance system operations, including fare collection, intramodal and intermodal transfers, scheduling, headway control.
ARTS	Advanced Rural Transportation Systems	Mostly safety and security technologies (e.g., May-day) for travel in sparsely-settled areas.

TRANSPORTATION AND CHANGE

Our transportation system provides fundamental and basic services to society, and has done so for thousands of years.

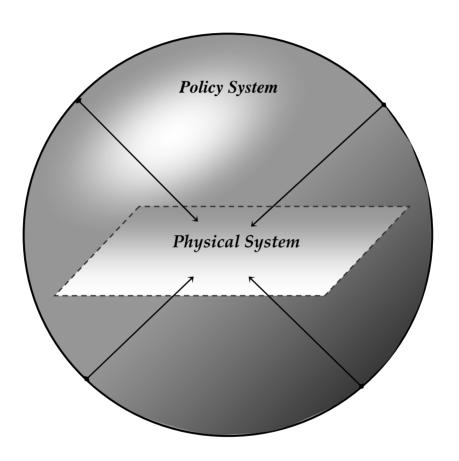
- However, as we begin the 21st century, the field is subject to many changes.
- ◆These transitions occur on the dimensions of technology, systems and institutions and characterize the field in its broadest sense.

TRANSITIONS

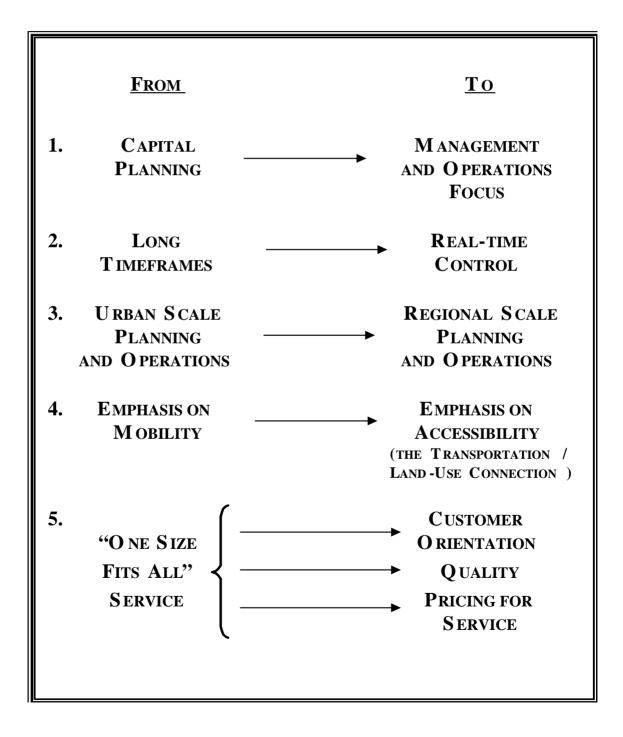
- What are these transitions?
- What do they mean for the education of the "New Transportation Professional"?

CLIOS

Complex
Large-scale
Integrated
Open
Systems


COMPLEXITY

Complexity as in CLIOS


(Sussman, "The New Transportation Faculty: The Evolution to Engineering Systems", *Transportation Quarterly*, Summer 1999):

◆ A system is complex when it is composed of a group of related units (subsystems), for which the degree and nature of the relationships is imperfectly known. Its overall behavior is difficult to predict, even when subsystem behavior is readily predictable. Further, the time-scales of various subsystems may be very different (as we can see in transportation -- landuse changes, for example, vs. operating decisions).

NESTED COMPLEXITY

SUMMARY OF TRANSITIONS

<u>From</u>	<u>To</u>
6. ALLOCATE	ALLOCATE
CAPACITY —	CAPACITY
BY QUEUING	BY PRICING
7. AGGREGATE	DISAGGREGATE
METHODS FOR —	METHODS FOR
DEMAND PREDICTION	DEMAND PREDICTION
8. EPISODIC DATA	D YNAMIC D ATA
FOR —	→ FOR
INVESTMENT PLANNING	INVESTMENT PLANNING
	(AND OPERATIONS)
9.	PRIVATE AND PUBLIC
	PRIVATEPARTNERSHIPS
PUBLICFINANCING	FOR FINANCING
FOR —	→ OF INFRASTRUCTURE
INFRASTRUCTURE	AND OPERATIONS
AND OPERATIONS	USING HYBRID RETURN
	ON INVESTMENT
	MEASURES
10. Infrastructure	NewHigh
CONSTRUCTION AND —	TECHNOLOGY
MAINTENANCEPROVIDERS	PLAYERS

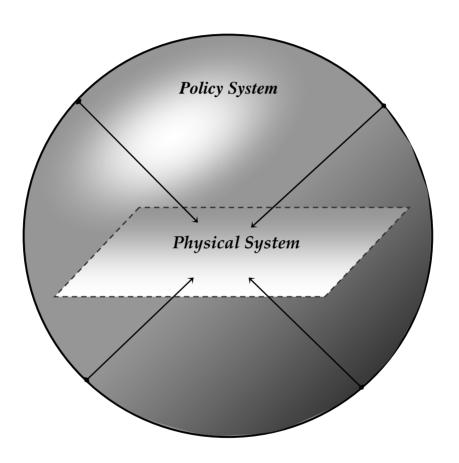
FROM	<u>To</u>
11. STATIC ORGANIZATIONS AND INSTITUTIONAL RELATIONSHIPS	DYNAMIC ORGANIZATIONS AND INSTITUTIONAL RELATIONSHIPS
PROFESSIONAL EMPHASIS ON DESIGN OF PHYSICAL INFRASTRUCTURE	PROFESSIONAL EMPHASIS ON TRANSPORTATION AS A COMPLEX, LARGE-SCALE, INTEGRATED, O PEN SYSTEM (CLIOS)
13. ECONOMIC DEVELOPMENT	SUSTAINABLE DEVELOPMENT
14. Computers Are "Just a Tool"	UBIQUITOUS COMPUTING
SUPPLY-SIDE SUPPLY PERSPECTIVE> EQUI	ΓΟ AND ON TO 'D EMAND SYSTEMS THAT LIBRIUM NEVER REACH IEWORK EQUILIBRIUM

<u>From</u>	<u>To</u>
16. INDEPENDENT CONVENTIONAL INFRASTRUCTURE PROJECTS	LINKED ADVANCED INFRASTRUCTURE PROJECTS REQUIRING A SYSTEM ARCHITECTURE
17. VEHICLES AND INFRASTRUCTURE AS INDEPENDENT	VEHICLES AND INFRASTRUCTURE AS ELECTRONICALLY LINKED
18. REDUCING CONSEQUENCES OF CRASHES	CRASH AVOIDANCE
19. \underline{FROM} MODAL PERSPECTIVE \longrightarrow	$\frac{\text{To}}{\text{Intermodal}} \longrightarrow \frac{\text{And On To}}{\text{SupplyChain}}$ $\text{Perspective} \longrightarrow \frac{\text{SupplyChain}}{\text{Management}}$
20. N ARROW TRANSPORTATION SPECIALISTS	THE NEW TRANSPORTATION PROFESSIONAL

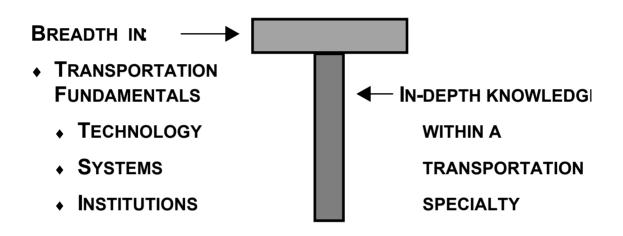
Change and the Interstate

- Expansion of trucking industry; financial blow to railroads; deregulation
- "Unprecedented and Unequaled Mobility"; regional transportation concept; MPOs
- ♦ New urban structures; edge cities
- Post WWII economic expansion
- "Stop the highway" backlash; build vs .no-build factions

Change and ITS


- Reinvention of logistics.
- New transportation players
- Changes in academia.
- New public sector partnerships at regional scale
- New public/private partnerships

Regional Deployment: A Strategic Vision (Sussman)


"The strategic vision for ITS, then, is as the integrator of transportation, communications, and intermodalism on a regional scale."

Quite different than the 1991 Strategic Plan vision!

NESTED COMPLEXITY

THE T-SHAPED TRANSPORTATION PROFESSIONAL

