ITS and Air Quality A Critical Look

April 6, 2005 1.212 Introduction to ITS Professor Joseph Sussman

Rebecca S. Dodder

Doctoral Candidate, Technology, Management and Policy Engineering Systems Division, MIT

Outline

• Is ITS good or bad for air quality?

- Which ITS applications have been shown to affect air quality, and how?
- Are there ITS applications specifically oriented toward air quality, energy use, and the environment?
- When deploying multiple ITS services, how can one assess the overall air quality impacts?
- What does this all mean for ITS Architectures?

Outline

• Is ITS good or bad for air quality?

- Which ITS applications have been shown to affect air quality, and how?
- Are there ITS applications specifically oriented toward air quality, energy use, and the environment?
- When deploying multiple ITS services, how can one assess the overall air quality impacts?
- What does this all mean for ITS Architectures?

ATMS (recurrent congestion)

- Reductions are possible from reduced congestion and smoother traffic flows
- Higher speeds may increase or reduce emissions, depending upon the pollutant
- In the short to medium term, increasing the effective capacity, and thus the volume of vehicles, may worsen localized air quality
- Long-term increases in trip-making and higher VMT may negate early benefits at a regional level

ATMS (non-recurrent congestion)

- Reductions are possible from reduced congestion and smoother traffic flows
- May be able to minimize the negative "side effects" of reducing recurrent congestion
- Increased reliability
- Often more effective when coupled with ATIS-based strategies

Improved route information may reduce emissions

- Individual: more efficient trip-chaining
- Network: congestion reduction
- Could increase VMT by re-rerouting to longerdistance but faster routes
- Could decrease VMT by re-rerouting to shorter routes (arterials versus freeways)
- May increase overall travel through changes in tripmaking behavior, such as more non-peak travel or peak spreading
- Net impact depends on VMT and emission rates

- Emissions may be reduced through greater use of public transportation rather than private auto use
 - Improved operations
 - Improved perception & comfort
- Operational improvements may reduce emissions from the transit vehicle fleet

CVO

- Improve fleet operations may reduce number of vehicles required for given freight movements
- May reduce impact on congestion in urban areas by avoiding particular routes or hours
- Permits closer monitoring of vehicle performance, fuel use, and emissions

- Can be used for more efficient driving (e.g., less aggressive accelerations and stops)
- Advanced Highway Systems face same issues at ATMS - could dramatically increase effective capacity, leading to increased emissions

Congestion and emissions

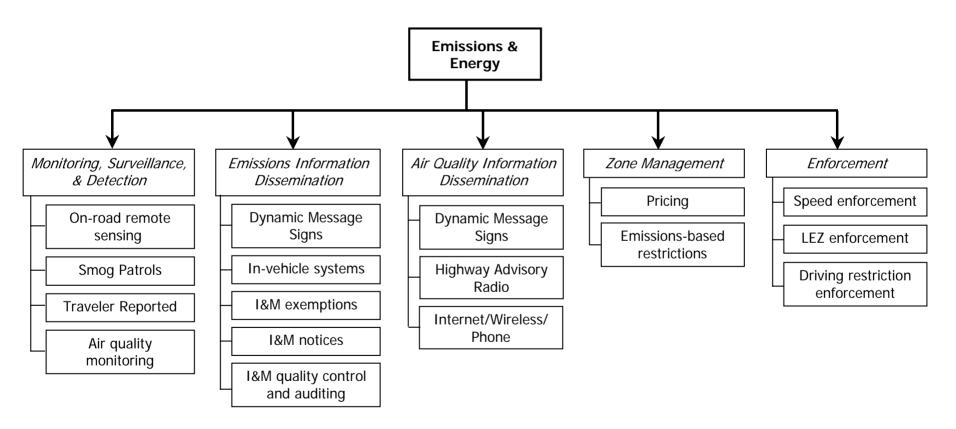
- Does improving congestion improve air quality?
 - <u>Smoother traffic flow</u>: stop-and-go traffic generates more emissions
 - <u>Faster traffic flow</u>: at which point is that no longer beneficial?
 - In the long-run, will it just create more traffic?
- Can you *manage*, not build, your way out of congestion?
 - What are the relative impacts of addressing congestion through operations v. building more capacity?
 - Can ITS minimize the negative impacts of more capacity?

"Sustainable Use" of ITS

- Most of the ITS subsystems can have either positive or negative air quality impacts
 - Depends upon the design of the system
 - Use of performance measures that are compatible with air quality
 - Ability to price may be key to sustainable use
- Are there ITS technologies specifically oriented toward air quality improvements?
- How do we incorporate them into the ITS architecture?

Outline

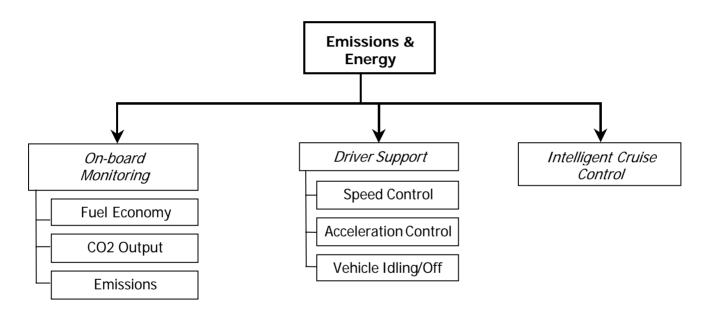
• Is ITS good or bad for air quality?


- Which ITS applications have been shown to affect air quality, and how?
- Are there ITS applications specifically oriented toward air quality, energy use, and the environment?
- When deploying multiple ITS services, how can one assess the overall air quality impacts?
- What does this all mean for ITS Architectures?

Emissions and Energy

- Can we expand the current ITS taxonomy to more creatively consider ITS technologies and bundles of technologies that reduce the social impacts of air pollution and energy use?
- The ITS-4
 - Sense
 - Communicate (i.e. Transmit)
 - Process
 - Use
- Building off the user service: "Emissions Testing and Mitigation" in the ITS Architecture

Expanding the ITS Taxonomy


Intelligent Infrastructure

Expanding the ITS Taxonomy

Intelligent Vehicles

> Applications specifically oriented towards air quality

Outline

• Is ITS good or bad for air quality?

- Which ITS applications have been shown to affect air quality, *and how*?
- Are there ITS applications specifically oriented toward air quality, energy use, and the environment?
- When deploying multiple ITS services, how can one assess the overall air quality impacts?
- What does this all mean for ITS Architectures?

ITS and Air Quality

- How do we measure the impacts?
 - What are the key variables that determine emissions of pollutants?
 - How does ITS impacts those variables?
- Making the step from emissions to air quality adds even more complexity
 - For example, HC or NOx limited ozone production
 - Most factors are external to transportation

ITS and Air Quality

• 8 Mechanisms: Private Auto Fleet

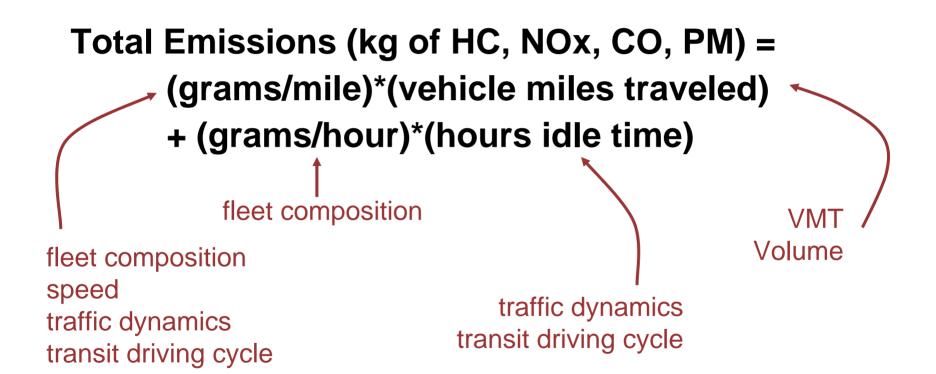
- VMT for Private Auto Fleet (network level)
- Traffic Volume/Throughput (corridor level)
- { Traffic Speed

Private

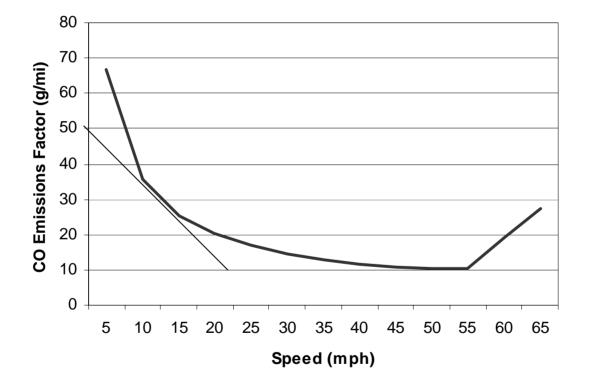
- Traffic Dynamics (idling, starts/stops, acceleration)
- Fleet Composition (number or % of high emitters)

ITS and Air Quality

• 8 Mechanisms: Public Transportation Fleet

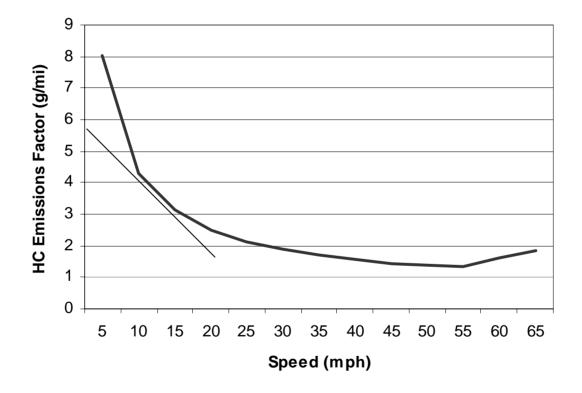

- VMT for Private Auto Fleet (network level)
- Traffic Volume/Throughput (corridor level)
- Traffic Speed

Private

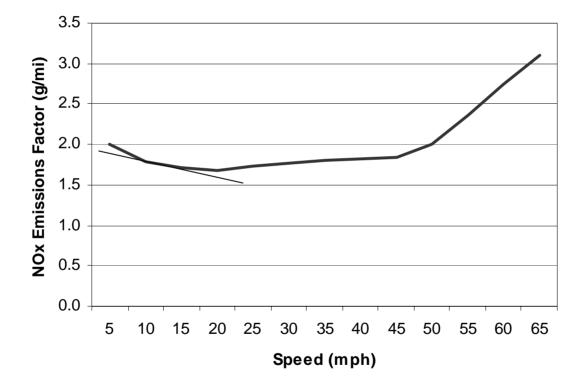

Public

- Traffic Dynamics (idling, starts/stops, acceleration)
- Fleet Composition (number or % of high emitters)
- Mode Share (split between transit, auto, walk/bike)
- \int VMT for Transit Fleet
 - Transit Driving Cycle (speed, dwell/idling, starts/stops)
 - Transit Fleet Operations (occupancy, # of vehicles)

Calculating Emissions



Speed and Emissions - CO



National Highway Institute, 1995

Speed and Emissions - HC

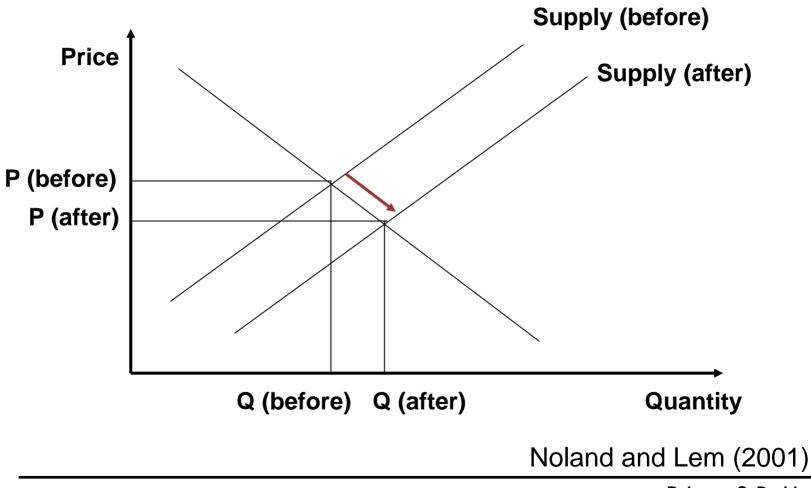
Speed and Emissions - NOx

What's wrong with this picture?

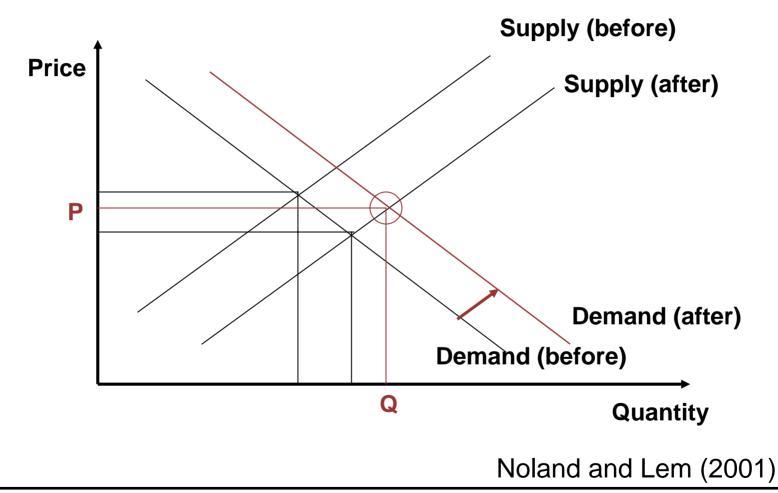
• Syracuse Signal Interconnect Project

	AM Peak Period			PM Peak Period		
			%			%
	Before	After	change	Before	After	change
Average Speed (mph)	14	15	7.1%	12	14	16.7%
Fuel Use (gallons)	490	447	-8.8%	546	475	-13.0%
CO (kg)	34.24	31.27	-8.7%	38.15	33.2	-13.0%
NOx (kg)	6.66	6.08	-8.7%	7.42	6.46	-12.9%
VOC (kg)	7.94	7.25	-8.7%	8.84	7.69	-13.0%

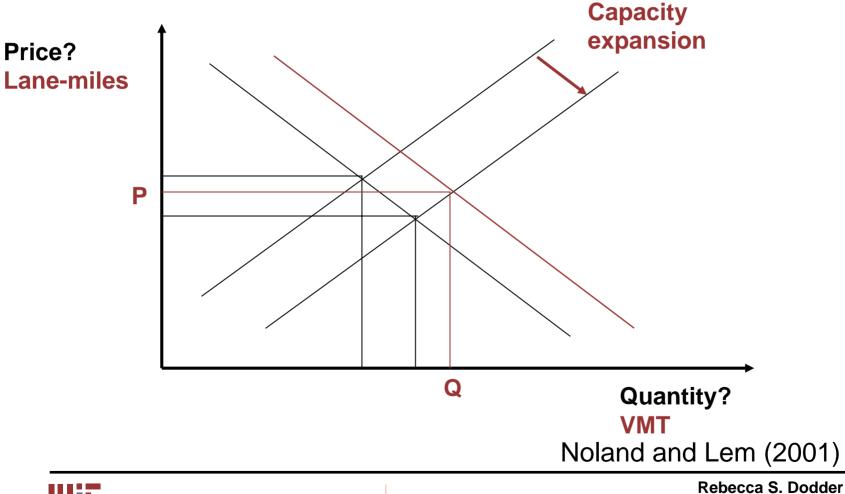
http://www.benefitcost.its.dot.gov/


Speed, Stops and Accelerations

- Using average network speed to estimate emissions factors is problematic
- For emissions factors, focus not just on the change in speed, but where you are on the emissions factors curve
- Acceleration is usually more important than decelerations and stops (idling)
- Microsimulation models will hopefully be able to provide the detail needed to understand the impacts of ITS on the vehicle driving cycle

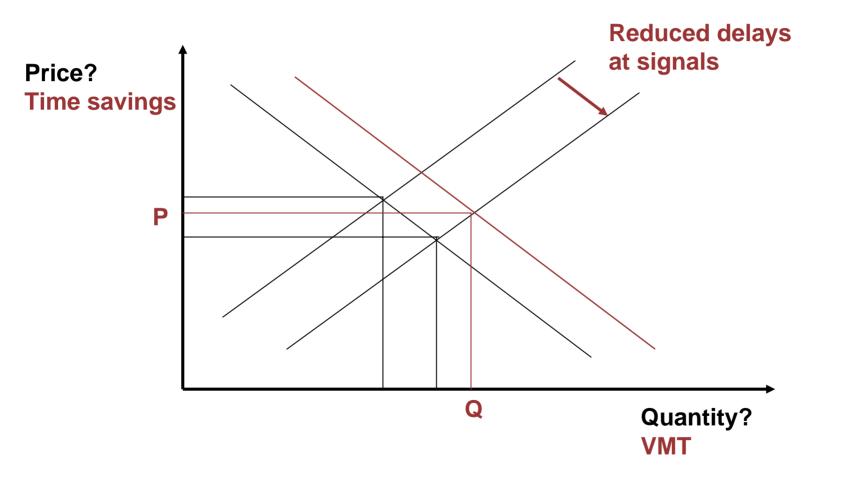

Vehicle miles traveled

- How does ITS change vehicle miles traveled?
 - Changing capacity
 - Changing perceptions of travel time
 - Providing information for trip making decisions
- Does induced demand play a role with ITS?
- Are we "rearranging the deck chairs on the Titanic?"

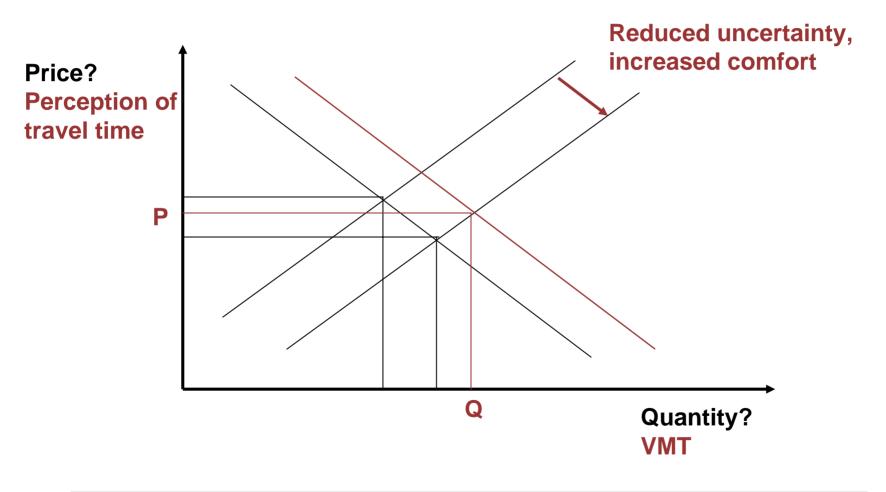

Induced travel – the basics

Induced travel – the basics

Induced travel – measuring P & Q



Rebecca S. Dodder 29 of 43


Induced Travel

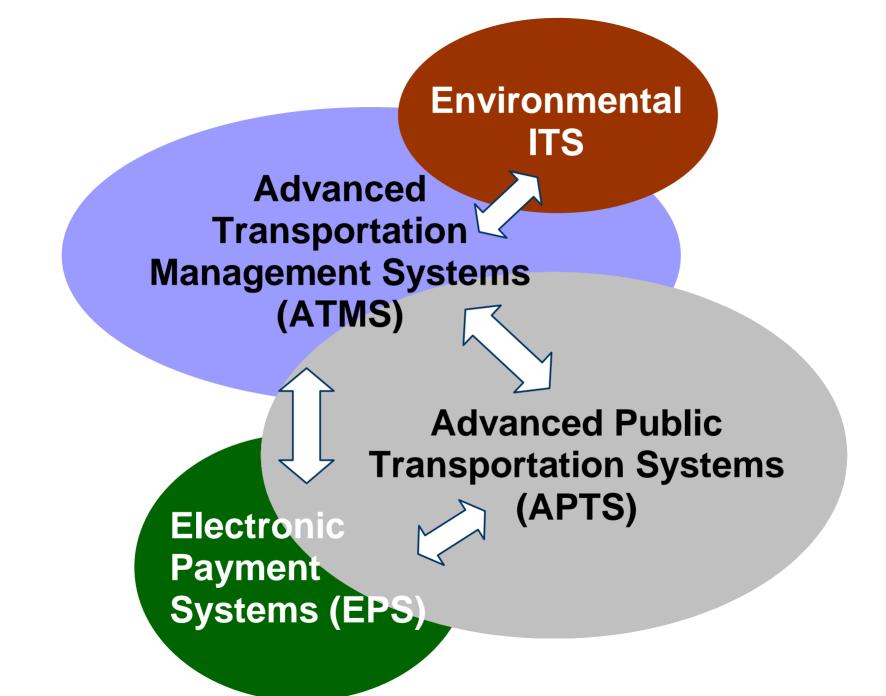
Behavioral Changes	Induced Travel?	Conditions
Short-run Impacts		
Change time-of-day of travel	No	Can lead to changes in amount of travel
Change route of travel	Possibly	Increased VMT if changes are to longer routes
Medium-run Impacts		
Change destination of travel	Possibly	Increased VMT if destinations are most distant
Change mode of travel	Yes	Switch from public transit to private auto
Change amount of travel	Yes	Increase in total number of trips
Long-run Impacts		
Change spatial allocation of activities	Yes	Increased VMT if repeated origins (home) and destinations (jobs, malls) are more spread out
Change in auto ownership levels	Yes	Can lead to permanent change in mode and amount of travel

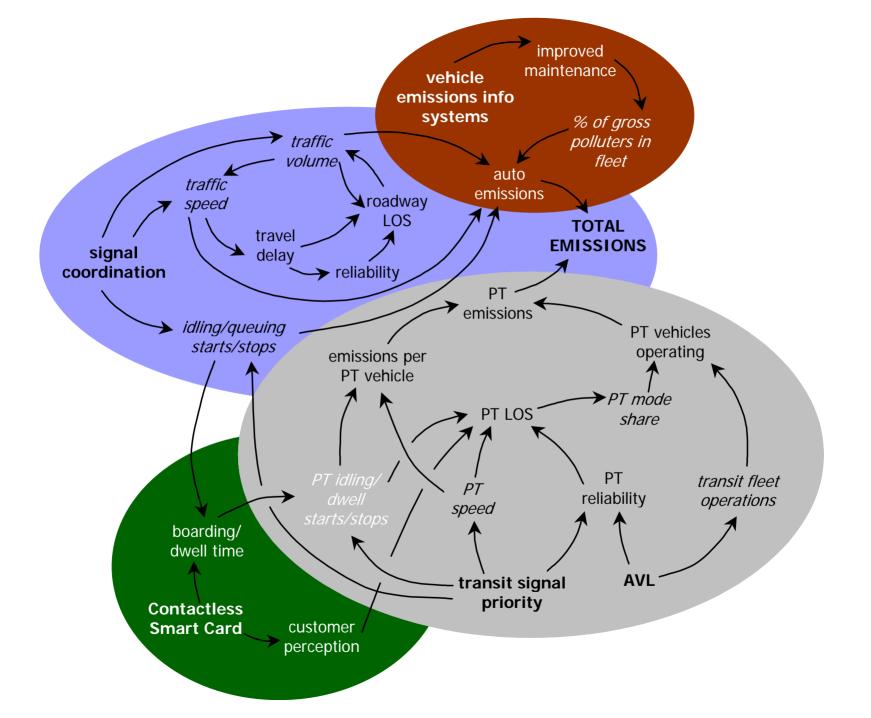
Induced travel – ATMS

Induced travel – ATIS

ITS-induced travel

- Price has both a <u>monetary</u> and <u>value of time</u> component
- Capacity expansion (lane-miles) is a proxy measure for travel time savings
- Time is relative
- To what extent can ITS:
 - (1) produce travel time savings, or
 - (2) change the perceived value of travel time, or
 - (3) change travel behavior without changing (1) or (2)?
- Pricing enables more control by balancing the value of time savings with monetary price


Outline


• Is ITS good or bad for air quality?

- Which ITS applications have been shown to affect air quality, and how?
- Are there ITS applications specifically oriented toward air quality, energy use, and the environment?
- When deploying multiple ITS services, how can one assess the overall air quality impacts?
- What does this all mean for ITS Architectures?

A Systems Framework

- ITS deployment in a metropolitan area is a highly complex system
- Many systems, and many interactions within and between systems
- *Qualitative* framework, but complementary to the *quantitative* modeling necessary in order to characterize impacts
 - Most studies model air quality impacts of only one or maximum two ITS applications at a time
 - First, we need to "map" all of these interactions, in order to identify *what* to model or measure

Outline

• Is ITS good or bad for air quality?

- Which ITS applications have been shown to affect air quality, and how?
- Are there ITS applications specifically oriented toward air quality, energy use, and the environment?
- When deploying multiple ITS services, how can one assess the overall air quality impacts?
- What does this all mean for ITS Architectures?

ITS Architectures and Air Quality

- What does air quality mean for ITS?
 - For cities with air quality problems, emissions impacts of ITS Architectures may be highly important
 - In the US, cities must meet requirements for "conformity" between transportation and air quality plans
 - Also a concern for cities such as Mexico City

ITS Architectures and Air Quality

Challenges

- Positive air quality impacts often assumed without rigorous documentation
- Still not mainstreamed in the transportation planning process
- Often an add-on to transportation modeling

Opportunities

- Idea of environmental, specifically emissions management "user services" is not new
- Can leverage air quality benefits of ITS to access federal funding or maintain conformity

Three approaches

- Measuring/modeling emissions impacts of planned ITS deployments
 - Passive approach
 - Simply tracking/reporting impacts
- Maximize possible air quality reductions from existing or planned ITS deployments
 - More proactive
 - Using feedback to "tweak" ITS deployments
- Deploy technologies within the "Emissions and Environment" subsystem
 - Most aggresive
 - Requires integration of sensing technologies and response/control strategies

Takeaways

- Nearly all ITS subsystems can have important air quality impacts, positive or negative
 - Need to understand the underlying factors
 - Need more experience with integrated deployment of Emissions and Energy ITS

ITS can lead to induced travel

- But, ITS also provides the tools to cope with it through pricing
- ITS also enables us to think differently about induced travel
- Architecture development can take various approaches to integrating air quality concerns
 - Depends on severity of air pollution
 - Will require additional inter-organizational cooperation with air quality agencies