Predictive Route Guidance An Interesting ITS Application

Jon Bottom

Charles River Associates

Introduction

Introduction

Goals of presentation Why travel information? What is travel information? Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Provide an overview of predictive route guidance

Introduction

Goals of presentation Why travel information? What is travel information? Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Provide an overview of predictive route guidance
- Give a sense of what's known

Introduction

Goals of presentation Why travel information? What is travel information? Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Provide an overview of predictive route guidance
- Give a sense of what's known
- Give a sense of what's not known

Introduction

Goals of presentation Why travel information? What is travel information? Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Provide an overview of predictive route guidance
- Give a sense of what's known
- Give a sense of what's not known
- Identify some of the major issues

Introduction

Goals of presentation Why travel information? What is travel information? Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

People have an imperfect knowledge of the network

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding
- Travel conditions are variable

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding
- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding
- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding
- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion
- By providing better travel information

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding
- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion
- By providing better travel information
 - Individuals make better travel decisions (probably)

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding
- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion
- By providing better travel information
 - Individuals make better travel decisions (probably)
 - Network conditions improve overall (maybe)

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Some means of communicating with travelers ...

Introduction

Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Some means of communicating with travelers ...

Before they begin trip ("pre-trip")

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

Introduction

Goals of presentation

Why travel information? What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Some means of communicating with travelers ...

- Before they begin trip ("pre-trip")
- During their trip ("en route")

■ To give them trip-related data ...

Introduction Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Some means of communicating with travelers ...

- Before they begin trip ("pre-trip")
- During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")

Introduction

Goals of presentation

Why travel information?

What is travel information?

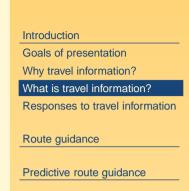
Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance


- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")
 - Travel recommendations ("guidance")

Predictive route guidance

System approach

A network model for guidance

- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we'll use both interchangeably ("messages")

System approach

A network model for guidance

- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we'll use both interchangeably ("messages")
- Based on network conditions

A network model for guidance

- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we'll use both interchangeably ("messages")
- Based on network conditions
 - In the past ("historical" guidance)

A network model for guidance

- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we'll use both interchangeably ("messages")
- Based on network conditions
 - In the past ("historical" guidance)
 - In the present ("current" guidance)

A network model for guidance

- Some means of communicating with travelers ...
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")
- To give them trip-related data ...
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we'll use both interchangeably ("messages")
- Based on network conditions
 - In the past ("historical" guidance)
 - In the present ("current" guidance)
 - In the future ("predictive" guidance)

Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Psychological responses

Introduction

Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening

Introduction

Goals of presentation

Why travel information? What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses

Introduction

Goals of presentation

Why travel information? What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses
 - Call ahead to destination

Introduction

Goals of presentation

Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule

Introduction

Goals of presentation

Why travel information? What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule
- Trip-related responses

Introduction

Goals of presentation

Why travel information? What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule
- Trip-related responses
 - Cancel trip

Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule
- Trip-related responses
 - Cancel trip
 - Pre-trip: Change departure time, route, mode

Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

- Psychological responses
 - Feel better knowing what's happening
- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule
- Trip-related responses
 - Cancel trip
 - Pre-trip: Change departure time, route, mode
 - En route: Change route, mode

Introduction

Goals of presentation Why travel information?

What is travel information?

Responses to travel information

Route guidance

Predictive route guidance

System approach

A network model for guidance

Route guidance

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

Let's think about:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Let's think about:
 - What data are needed

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Let's think about:
 - What data are needed
 - How they're collected

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Let's think about:
 - What data are needed
 - How they're collected
 - How they're processed

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

Let's think about:

- What data are needed
- How they're collected
- How they're processed
- How messages are communicated

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance Predictive guidance

Predictive route guidance

System approach

A network model for guidance

Let's think about:

- What data are needed
- How they're collected
- How they're processed
- How messages are communicated
- How network reacts

Introduction

Route guidance

Guidance issues

Historical guidance Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

Let's think about:

- What data are needed
- How they're collected
- How they're processed
- How messages are communicated
- How network reacts
- How guidance system reacts

Introduction

Route guidance

Guidance issues

Historical guidance Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

Data needed:

Introduction

Route guidance	
Guidance issues	

Historical guidance Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
J

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:

Introduction

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos

Route guidance Guidance issues Historical guidance Current guidance Predictive guidance Predictive route guidance System approach A network model for guidance	
Historical guidance Current guidance Predictive guidance Predictive route guidance System approach	Route guidance
Current guidance Predictive guidance Predictive route guidance System approach	Guidance issues
Predictive guidance Predictive route guidance System approach	Historical guidance
Predictive route guidance System approach	Current guidance
System approach	Predictive guidance
	Predictive route guidance
A network model for guidance	System approach
	A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
 - Non-recurrent congestion: conditions get worse

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach

A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
 - Non-recurrent congestion: conditions get worse
- How guidance system reacts:

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
 - Non-recurrent congestion: conditions get worse
- How guidance system reacts:
 - Update travel condition database

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach

A network model for guidance

Data needed:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

Introduction

System approach

A network model for guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")

nt				

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:

Intr	and the second s		
Intr	odu	ICTIC	n

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers

	rc			

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers
- How network reacts:

Introducti	nn
Introducti	

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers
- How network reacts:
 - Depends on time-stability of prevailing conditions

			n

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers
- How network reacts:
 - Depends on time-stability of prevailing conditions
- How guidance system reacts:

Int	rod	ucti	on
	100	uou	

Route guidanceGuidance issuesHistorical guidanceCurrent guidancePredictive guidancePredictive route guidanceSystem approachA network model for guidanceResearch needs

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers
- How network reacts:
 - Depends on time-stability of prevailing conditions
- How guidance system reacts:
 - Update condition estimation algorithms, database

Introduction

Route guidance
Guidance issues
Historical guidance
Current guidance
Predictive guidance
Predictive route guidance
System approach
A network model for guidance
Research needs

Data needed:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:
 - Like current guidance

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:
 - Like current guidance
- How network reacts:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:
 - Like current guidance
- How network reacts:
 - Depends on quality of predictions, guidance

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:
 - Like current guidance
- How network reacts:
 - Depends on quality of predictions, guidance
- How guidance system reacts:

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:
 - Like current guidance
- How network reacts:
 - Depends on quality of predictions, guidance
- How guidance system reacts:
 - Track discrepancies between predictions, reality

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information
- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary
- How communicated:
 - Like current guidance
- How network reacts:
 - Depends on quality of predictions, guidance
- How guidance system reacts:
 - Track discrepancies between predictions, reality
 - Update algorithms, databases

Introduction

Route guidance

Guidance issues

Historical guidance

Current guidance

Predictive guidance

Predictive route guidance

System approach

A network model for guidance

Predictive route guidance

Introduction

Route guidance

Predictive route guidance

The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

Suppose we have a great network prediction model

System approach

A network model for guidance

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions

Introduction

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:

Introduction

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely

Introduction

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"
- If a significant number of drivers change their decisions in some way

	I		
mr	O(1)	ucti	on

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"
- If a significant number of drivers change their decisions in some way
- The effects of their decisions on network conditions

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"
- If a significant number of drivers change their decisions in some way
- The effects of their decisions on network conditions
- Will invalidate our predictions!

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"
- If a significant number of drivers change their decisions in some way
- The effects of their decisions on network conditions
- Will invalidate our predictions!
- The Self-Defeating Prophecy!!

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

Example of a self-defeating prophecy

Introduction

Route guidance

Predictive route guidance

The key issue - Part I

The key issue - Part II

The key issue - Part III Side points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes

Introduction

Route guidance

Predictive route guidance

The key issue - Part I The key issue - Part II

The key issue - Part III Side points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it

Introduction

Route guidance

Predictive route guidance

The key issue - Part I

The key issue - Part II

The key issue - Part III Side points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route

	n
Introductio	ווע

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original

			n

Route guidance

Predictive route guidanceThe key issue - Part IThe key issue - Part IIThe key issue - Part IIISide points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing

I	n	hr	\sim	Ч		c	ti	0	n
I		u	U	u	u	C	u	U	

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing
- Another possibility:

Route guidance

Predictive route guidanceThe key issue - Part IThe key issue - Part IIThe key issue - Part IIISide points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing
- Another possibility:
 - Congestion oscillates from one route to the other

Route guidance

Predictive route guidanceThe key issue - Part IThe key issue - Part IIThe key issue - Part IIISide points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing
- Another possibility:
 - Congestion oscillates from one route to the other
- In all these cases, guidance was based on wrong predictions

Law.	£	du	- 4.2	
In	Tro	au	CTI	nr
		au	ou	

Route guidance

Predictive route guidanceThe key issue - Part IThe key issue - Part IIThe key issue - Part IIISide points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing
- Another possibility:
 - Congestion oscillates from one route to the other
- In all these cases, guidance was based on wrong predictions
 - We've probably made network conditions worse

۰.	-+-	00	1	4	00
	111	OC			OU
		00		~	.

Route guidance

Predictive route guidanceThe key issue - Part IThe key issue - Part IIThe key issue - Part IIISide points

System approach

A network model for guidance

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing
- Another possibility:
 - Congestion oscillates from one route to the other
- In all these cases, guidance was based on wrong predictions
 - We've probably made network conditions worse
 - And people will eventually stop listening to us

Ir	۱tr	0	d		0	ti	0	r
	IU.	U	u	u	J	u	U	
		~	~	~	~	•••	~	۰.

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

Guidance is "consistent"

Introduction

Route guidance

Predictive route guidance

The key issue - Part I

The key issue - Part II

The key issue - Part III Side points

System approach

A network model for guidance

- Guidance is "consistent"
- When the network condition predictions

Introduction

Route guidance

Predictive route guidance

The key issue - Part I

The key issue - Part II The key issue - Part III

Side points

System approach

A network model for guidance

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based

Introduction

Route guidance

Predictive route guidance

The key issue - Part I

The key issue - Part II The key issue - Part III

Side points

System approach

A network model for guidance

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based
- Turn out to be true (within limits of model accuracy)

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based
- Turn out to be true (within limits of model accuracy)
- After drivers receive the messages and react to them

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based
- Turn out to be true (within limits of model accuracy)
- After drivers receive the messages and react to them
- How do we compute consistent guidance?

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance

If only a small fraction of drivers receive predictive guidance

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach

A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages

Introduction

Route guidance

Predictive route guidance

The key issue - Part I

The key issue - Part II

The key issue - Part III Side points

System approach

A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –

Introduction

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III Side points

System approach

A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise

Introduction	
Route guidance	
Predictive route guidance	
The key issue - Part I	
The key issue - Part II	
The key issue - Part III	
Side points	
System approach	

A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach

A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
- It's possible to make predictions by extrapolation:

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
- It's possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info

Introduction
-
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
System approach
A network model for guidance
Research needs

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
- It's possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info
- At least one company currently does this

Introduction
Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
Side points
Side points System approach
System approach
System approach
System approach A network model for guidance

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
- It's possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info
- At least one company currently does this
- Difficult to factor driver reponse into extrapolations

Introduction
Route guidance
Predictive route guidance
The key issue - Part I
The key issue - Part II
The key issue - Part III
Side points
Side points
Side points System approach
System approach

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
- It's possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info
- At least one company currently does this
- Difficult to factor driver reponse into extrapolations
- Won't consider further

In	tr	0	a	 0	tı	0	n

Route guidance

Predictive route guidance The key issue - Part I The key issue - Part II The key issue - Part III

Side points

System approach

A network model for guidance

System approach

Introduction

Route guidance

Predictive route guidance

System approach

Major steps

A network model for guidance

Rolling horizon approach

Introduction

Route guidance

Predictive route guidance

System approach

Major steps

A network model for guidance

- Rolling horizon approach
 - Consider a guidance horizon

Introduction

Route guidance

Predictive route guidance

System approach

Major steps

A network model for guidance

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future

Introduction

Route guidance

Predictive route guidance

System approach

Major steps

A network model for guidance

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon

Introduction
Route guidance
Predictive route guidance
System approach
Major steps
A network model for guidance

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions

Introduction
Route guidance
Predictive route guidance
System approach
Major steps
A network model for guidance
Research needs
System approach Major steps A network model for guidance

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon

Introduction
Route guidance
Predictive route guidance
System approach
Major steps
A network model for guidance
Research needs

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each update interval guidance is re-computed

Introduction
Route guidance
Predictive route guidance
System approach
Major steps
A network model for guidance
Research needs

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each update interval guidance is re-computed
 - Each update, the process is rolled foward by one period

Introduction
Route guidance
Predictive route guidance
Custom servicesh
System approach
Major steps
Major steps
Major steps

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each update interval guidance is re-computed
 - Each update, the process is rolled foward by one period
 - Update interval might be one/several guidance intervals

Introduction
Route guidance
Predictive route guidance
O set an an an an a
System approach
Major steps
A network model for guidance
A network model for guidance Research needs

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each update interval guidance is re-computed
 - Each update, the process is rolled foward by one period
 - Update interval might be one/several guidance intervals
 - Depends on data processing, communication times

Introduction
Route guidance
Predictive route guidance
System approach
Major steps
Major steps
Major steps
Major steps A network model for guidance

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each update interval guidance is re-computed
 - Each update, the process is rolled foward by one period
 - Update interval might be one/several guidance intervals
 - Depends on data processing, communication times
- If an incident is detected, reset

Introduction
Route guidance
Predictive route guidance
System approach
Major steps
A network model for guidance

A network model for guidance

Route guidance

Predictive route guidance

System approach

A network model for guidance

Conventional network models Equilibrium as a fi xed point Guidance network models Consistency as a fi xed point

These network models assume drivers have perfect information

 Introduction

 Route guidance

 Predictive route guidance

 System approach

 A network model for guidance

 Conventional network models

 Equilibrium as a fi xed point

 Guidance network models

 Consistency as a fi xed point

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities

	roduction oute guidance
Pre	edictive route guidance
Sy	stem approach
A r	network model for guidance
Co	nventional network models
Eq	uilibrium as a fi xed point
Gu	idance network models
Co	nsistency as a fi xed point
Re	search needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F

In	troduction
R	oute guidance
P	redictive route guidance
S	ystem approach
_	network model for guidance
_	network model for guidance onventional network models
С	
C	onventional network models
C E G	onventional network models quilibrium as a fi xed point
C E G	onventional network models quilibrium as a fi xed point uidance network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - \blacksquare Time-dependent path traversal times T

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (F)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (*F*)
 - outputs link times and flows; path times (T)

1	ntroduction
F	Route guidance
F	Predictive route guidance
_	System approach
-	A network model for guidance
	Conventional network models
E	Equilibrium as a fi xed point
(Guidance network models
(Consistency as a fi xed point

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (*F*)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):

1	Route guidance
	Predictive route guidance
	System approach
/	A network model for guidance
(Conventional network models
I	Equilibrium as a fi xed point
(Guidance network models
(Consistency as a fi xed point
	Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (*F*)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
 - inputs path times (T)

_	Introduction
	Route guidance
	Predictive route guidance
	System approach
	A network model for guidance
	Conventional network models
	Equilibrium as a fi xed point
	Guidance network models
	Consistency as a fi xed point
	Research needs

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (*F*)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
 - inputs path times (*T*)
 - outputs path flows (F)

lates du stisse
Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (*F*)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
 - inputs path times (*T*)
 - outputs path flows (F)

Picture!

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

Conventional analysis of DTA models is based on

 Route guidance

 Predictive route guidance

 System approach

 A network model for guidance

 Conventional network models

 Equilibrium as a fi xed point

 Guidance network models

Introduction

Consistency as a fi xed point

Conventional analysis of DTA models is based on

Infinite-dimensional variational inequalities

Route guidancePredictive route guidanceSystem approachA network model for guidanceConventional network modelsEquilibrium as a fi xed pointGuidance network modelsConsistency as a fi xed point

Research needs

Introduction

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem

	A network model for guidanc Conventional network model Equilibrium as a fi xed point Guidance network models
Guidance network models Consistency as a fi xed point	Conventional network model: Equilibrium as a fi xed point Guidance network models
Guidance network models Consistency as a fi xed point	Guidance network models
	Consistency as a fi xed point
Research needs	
	Research needs

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem
- Fixed point approach more applicable

Route	guidance
Predic	tive route guidance
Syster	n approach
A netw	ork model for guidance
Conve	ntional network models
Equilib	orium as a fi xed point
Guidar	nce network models
Consis	stency as a fi xed point
Resea	rch needs

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem
- Fixed point approach more applicable
- Fixed point definition

for $T: X \mapsto X$, $X \subseteq \Re^n$ (or X more general) find $x^* \in X$ such that $x^* = T(x^*)$

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem
- Fixed point approach more applicable
- Fixed point definition

for $T: X \mapsto X$, $X \subseteq \Re^n$ (or X more general) find $x^* \in X$ such that $x^* = T(x^*)$

Fixed point expresses an equilibrium condition

 $S \circ D(T) = T$ $D \circ S(F) = F$

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

Need to account for new aspects of problem

 Introduction

 Route guidance

 Predictive route guidance

 System approach

 A network model for guidance

 Conventional network models

 Equilibrium as a fi xed point

 Guidance network models

 Consistency as a fi xed point

Need to account for new aspects of problem

• Guidance messages (M)

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance Conventional network models Equilibrium as a fi xed point Guidance network models

Consistency as a fixed point

- Need to account for new aspects of problem
 - Guidance messages (*M*)
 - Driver behavior taking account of messages (D)

	ntroduction
F	Route guidance
F	Predictive route guidance
	System approach
/	A network model for guidance
(Conventional network models
E	Equilibrium as a fi xed point
(Guidance network models
(Consistency as a fi xed point
F	Research needs

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point
Research needs

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - \blacklozenge Time-dependent path, subpath traversal times T

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - ◆ Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - Time-dependent guidance messages M

Introduction
Deute enideres
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - ◆ Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages M
- Guidance model components are
 - network loader (S):

Introduction
Deute quidence
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages M
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages M
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (G):

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (*G*):
 - inputs path, subpath times (*T*)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

Research needs

Introduction to ITS, 7 March 2005

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (*G*):
 - inputs path, subpath times (*T*)
 - outputs guidance messages (M)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (*G*):
 - inputs path, subpath times (*T*)
 - outputs guidance messages (M)
 - driver behavior model (D):

Introduction
Route guidance
Dradiativa rauta guidanaa
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - ◆ Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (*G*):
 - inputs path, subpath times (*T*)
 - outputs guidance messages (M)
 - driver behavior model (D):
 - inputs guidance messages (G)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

- Need to account for new aspects of problem
 - ◆ Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
- Key variables are:
 - Time-dependent path, subpath splits P
 - Time-dependent path, subpath traversal times T
 - ◆ Time-dependent guidance messages *M*
- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (*G*):
 - inputs path, subpath times (*T*)
 - outputs guidance messages (M)
 - driver behavior model (D):
 - inputs guidance messages (G)
 - outputs path, subpath splits (P)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models
Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

Fixed point expresses a consistency condition

 $G \circ S \circ D(M) = M$ $D \circ G \circ S(P) = P$ $S \circ D \circ G(T) = T$

Route guidance

Predictive route guidance

System approach

A network model for guidance Conventional network models Equilibrium as a fi xed point Guidance network models

Consistency as a fixed point

Fixed point expresses a consistency condition

 $G \circ S \circ D(M) = M$ $D \circ G \circ S(P) = P$ $S \circ D \circ G(T) = T$

There are heuristic algorithms for solving these, but they are very slow

Fixed point expresses a consistency condition

 $G \circ S \circ D(M) = M$ $D \circ G \circ S(P) = P$ $S \circ D \circ G(T) = T$

- There are heuristic algorithms for solving these, but they are very slow
 - the method of successive averages (MSA)

Fixed point expresses a consistency condition

 $G \circ S \circ D(M) = M$ $D \circ G \circ S(P) = P$ $S \circ D \circ G(T) = T$

- There are heuristic algorithms for solving these, but they are very slow
 - the method of successive averages (MSA)
 - iterate averaging methods (Polyak averaging)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Conventional network models Equilibrium as a fi xed point
Guidance network models
Consistency as a fi xed point

Fixed point expresses a consistency condition

 $G \circ S \circ D(M) = M$ $D \circ G \circ S(P) = P$ $S \circ D \circ G(T) = T$

- There are heuristic algorithms for solving these, but they are very slow
 - the method of successive averages (MSA)
 - iterate averaging methods (Polyak averaging)

My doctoral research was on this

Research needs

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance

Research needs What needs doing

Basic models and components

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance

Research needs

- Basic models and components
 - Real-time dynamic O-D matrix estimation

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance

Research needs

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance

Research needs

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance

Research needs

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Research needs
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design

Introduction
Route guidance
Predictive route guidance
O set and a set and a set
System approach
A network model for guidance
Research needs
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Research needs
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
- New ideas

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
- New ideas
 - Adaptive guidance in presence of uncertainty (Gao 2004)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Research needs
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
- New ideas
 - Adaptive guidance in presence of uncertainty (Gao 2004)
 - Vehicle-centric guidance

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Research needs
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
- New ideas
 - Adaptive guidance in presence of uncertainty (Gao 2004)
 - Vehicle-centric guidance
 - Hybrid centralized/vehicle-centric systems (Farver 2005)

Introduction
Route guidance
Predictive route guidance
System approach
A network model for guidance
Research needs
What needs doing

Thank you! – Questions?

Introduction

Route guidance

Predictive route guidance

System approach

A network model for guidance

Research needs

Thank you! – Questions?