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Problem 2 

 

 

 
 

 

 

Problem 3  
(a) As suggested, we can prove the results by contraposition. Let’s suppose that the set of nodes T 

contains no solution to the 1-median problem. Then, the solution one of S’s nodes. Let y ∈ S be 

that node.  

Then      J(y)  = ∑
∈Tj

jydjh ),()( + ∑
∈Sj

jydjh ),()(  

  = ∑
∈

+
Tj

jtdtydjh )],(),()[( + ∑
∈Sj

jydjh ),()(  

  = ),()( tydTH +∑
∈Tj

jtdjh ),()( + ∑
∈Sj

jydjh ),()(  

  ≥  ),()( tydSH +∑
∈Tj

jtdjh ),()( + ∑
∈Sj

jydjh ),()(  

  = ∑
∈Tj

jtdjh ),()( + ∑
∈

+
Sj

tydjydjh )],(),()[(  

  = ∑
∈Tj

jtdjh ),()( + ∑
∈Sj

jtdjh ),()(  

  = J(t) 

 

This implies that the 1-median could be located at Tt ∈ , which contradicts our initial 

assumption.  

Therefore, the set of nodes T contains at least one solution to the 1-median problem on G(N,A).  
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(b) From part (a), we know that there is an optimal solution in T.  

Ty ∈∀      J(y) = ∑
∈Tj

jydjh ),()( + ∑
∈Sj

jydjh ),()(  

  = ∑
−∈ )(

),()(
tTj

jydjh + ),()( tydth +∑
∈

+
Sj

jtdtydjh )],(),()[(    

 = ∑
−∈ )(

),()(
tTj

jydjh + ),()( tydth + ),()( tydSH +∑
∈Sj

jtdjh ),()(  

  = ∑
−∈ )(

),()(
tTj

jydjh + ),()]()([ tydSHth + +∑
∈Sj

jtdjh ),()(  

Therefore, we have:   Ty ∈∀   J(y) = )(
~

yJ + C 

 where C = ∑
∈Sj

jtdjh ),()(  does not depend on y  

 and )(
~

yJ = ∑
−∈ )(

),()(
tTj

jydjh + ),()]()([ tydSHth +  

J
~

is the objective function for the 1-median problem on ),(' tATG with the weight of node t 

given by )()( thSH + . 

 

(c) The isthmus edge (g, i) separates the network into two distinct subnetworks with node sets S1 and 

T1, where: 

S1 = {a, b, c, d, e, f, g, h} 

T1 = {i, j, k, l, m, n, o, p, q} 

 H(S1) = 32 and H(T1) = 41. Therefore, an optimal solution must be one of the nodes in T1.  

We now disregard the portion of the network involving nodes in S1 and increase the weight at i to 

( ) ( )SHih +  = 5 + 32 = 37. Consider the isthmus edge (i, j) which divides the new graph into two 

distinct subnetworks with S2 = {j, k, l, m} and T2 = {i, n, o, p, q}. Clearly H(S2) < H(T2) (remember 

that ( )ih  is now 37). So, we can disregard the portion of the new network involving nodes in S2. And 

again, we must increase the weight at i by H(S2). So, the weight at node i  becomes 37 + H(S2) = 37 + 

17 = 54.  

The new network consists only of nodes i, n, o, p , q, and edges between pairs of nodes from this set. 

Now consider the isthmus edge (i, n) which divides the new graph into nodes sets S3 = {i} and T3 = 

{n, o, p, q}. H(S3) = 54 and H(T3) = 19. Therefore, an optimal solution to the 1-median problem is to 

locate at node i.  
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Problem 4 
(a) TD, the minimum spanning tree of D, has an even number of odd-degree nodes, like any 

undirected network.  

Let v be the point in D that is closest to s.  

We then have two cases:  

- v had an even degree in TD, or 

- v had on odd degree in TD. 

 

If v had an even degree, then the addition of the edge (s, t) will make v a node of odd degree in T. 

This increases the number of odd-degree nodes in the “D part” of the tree T by one. We have an 

odd number of odd-degree nodes in R.  

 

If v had an odd degree, then the addition of the edge (s, t) will make v a node of even degree in T. 

This decreases the number of odd-degree nodes in the “D part” of the tree T by 1. We then have 

an odd number of odd-degree nodes in R.  

 

(b) (i) H adds one more incidence to all the odd-degree nodes in T. Therefore, the graph G has no 

nodes of odd-degree. It then has an Euler tour.  

 

(ii) The key observation here is that because of the large additional cost K associated with each 

pairing of a point in D with a point in P, there will be only one pairing of an odd-degree point in D 

(call it z) with an odd-degree point in P (call it w) in the optimal matching.  

(Note that from (a) we know that there will be one “left-over” odd-degree point from D and one 

“left-over” odd-degree point in P, after we have finished the pair wise matching of odd-degree 

points in D with one another and of odd-degree points in P with one another; please also note that, 

by construction, s will always have a degree of 2 in T).  

Thus we can begin at s, find an Euler path from s to z that visits all the points in D at least once, 

then use the link (z, w) to go to the points in P, and then find an Euler path from w to s that visits 

all the points in P at least once.  

 

 

Problem 5 
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Problem 6 
 

(a) For L1: according to step 2, the length between city 1 and ( )1pi is less or equal to 

( ) maxmax2
1

ddL
k

+− . Therefore:  

L1  ≤  ( ) maxmax2
1

ddL
k

+− + ( )( )1,1pid   

≤  ( ) maxmax 22
1

ddL
k

+−  

 

For Lj where j∈{2, 3, …, k-1}, we have from step 2 that: 

the length of L between 1 and ( )jpi  is less than or equal to ( ) maxmax2 ddL
k

j
+− ,  

the length of L between 1 and ( ) 11 +−jpi  is greater than ( ) maxmax2
1

ddL
k

j
+−

−
.  

Therefore, the length of L between ( ) 11 +−jpi  and ( )jpi  is less than or equal to ( )max2dL
k

j
− . 

This proves the results since ( )( ) ( )( )
max11 2,1,1 didid jpjp ≤+

+−
. 

 

For Lk, we have  

Lk ( ) maxmaxmax ]2
1

[ dddL
k

k
L ++−

−
−≤ = ( ) maxmax 22

1
ddL

k
+−  

 

(b) From the previous question we have  

L(Tlong) ( ) maxmax 22
1

ddL
k

+−≤ = 







−+

k
d

k

L 1
12 max  

We know the following: 

L ≤  *
2

3
L    (Christofides algorithm) 
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( )**
longTL

k

L
≤  (obvious, since ( )**

longTkLL ≤ ) 

( )*

max2 longTLd ≤  (obvious) 

Using successively the above three inequalities we have 
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