
10.34, Numerical Methods Applied to Chemical Engineering 
Professor William H. Green 

Lecture #18: Optimization. Sensitivity Analysis. Introduction: Boundary Value 
Problems (BVPs). 

 

Summary: Optimization with Constraints 
minx f(x) such that  cm(x) - sm = 0  

   sm ≥ 0  m = 1 … Ninequalities 

minx f(x) + ξ(c-s)2
  sm = 0  m > Ninequalities 

 penalty method, second term ξ(c-s)2 is optional 

 

   KKT conditions:  at constrained (local) minimum: 

Augmented   xf – Σm(λm xcm) = 0   

Lagrangian    cm – sm = 0 

(LA)    λmcm = 0  

{see book}   sm ≥ 0  m = 1 … Ninequalities 

sm = 0  equalities 
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   Newton  SQP 

 

If everything is linear:    SIMPLEX  (i.e. many business problems) 

 g(x) = 0    xN = G(x1, …, xN-1) 

Unconstrained   trust region Newton-type BFGS 

gigantic   conjugate gradient 

In Chemical Engineering, the problems often involve models with differential equations: 

cost  return 

f(x) = ( )∑ −
i

fioii xtYxtYw );();(  

knobs          what we need      what we produce 
(can adjust) 
feed composition  Need Jacobian of G with respect to Y; need in stiff solver to solve. 
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Need gradient and f. 

To use all of our methods, we need to be able to compute:  ∑ ⎟
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         how do you compute this? 
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  chain rule 
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= ∑      f      (for every x we get an f that can be used for optimization) 

solve this with initial conditions 

       J     {Jacobian of G} 

Have n2 differential equations; stiff; linear in s. 

Sensitivity Analysis 
Programs to do this:  DASPK     SOLVE for s and f simultaneously 

   DAEPACK  

   DSL485 

   DASAC 
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Initial Conditions 

What is sji(t0)? 

sji(t0) = 0  {most knobs} 

sji(t0) = 1 {for adjustment of Y0} 

Professor Barton teaches an advanced course in optimization. 
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Boundary Value Problems (BVPs) 
Conservation Laws:  ∂φ/∂t = -
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·(φv) - ·JD + S(φ) 
 
    convection  diffusion  reaction 

JD = Γ+ φ  

isotropic:  JD = -c φ  

for steady-state, isotropic:  0 = - ·(φv) - c 2φ + S(φ) ∀ x  

          Laplacian 

 

Boundary conditions: 

Dirichlet   φ(boundary) = number 

von Neumann  φ(boundary) = number or 0 

Symmetry    0=
∂
∂

jx
φ

 

φ(x) infinite {rare to find exact} 

φapprox(x) = f(x; c)  adjust: large finite number (104) 

 

Basis function expansions φapprox = ∑
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State how you did 
approximation because there 
are many ways to do it 

Dirichlet φ(boundary) {φ}  i = 1,N 

Finite difference 
approximation 
to differential equation 
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von Neumann 
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 given φ0? Usual    2nd order polynomials 
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          unknown    known    unknown 
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This is how you find out B.C. with second order polynomial schemes and a finite difference 

approximation. 
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