Lecture \#18: Optimization. Sensitivity Analysis. Introduction: Boundary Value Problems (BVPs).

Summary: Optimization with Constraints

Lagrangian
\{see book\}
$c_{m}(\underline{x})-s_{m}=0$
$s_{m} \geq 0 \mathrm{~m}=1 \ldots \mathrm{~N}_{\text {inequalities }}$
$\mathrm{s}_{\mathrm{m}}=0 \mathrm{~m}>\mathrm{N}_{\text {inequalities }}$

KKT conditions: at constrained (local) minimum:

$$
\underline{\nabla}_{x} f-\Sigma_{m}\left(\lambda_{m} \underline{\nabla}_{x} c_{m}\right)=\underline{0} \rightarrow
$$

$$
c_{m}-s_{m}=0
$$

$$
\lambda_{m} c_{m}=0
$$

$$
\begin{array}{ll}
s_{m} \geq 0 & m=1 \ldots N_{\text {inequalities }} \\
s_{m}=0 & \text { equalities }
\end{array}
$$

$$
\begin{aligned}
\underline{x}=\left(\begin{array}{c}
\underline{c} \\
\underline{\lambda} \\
\underline{s}
\end{array}\right) \quad \underline{F}(\underline{x})=\underline{0}=\left(\begin{array}{c}
\nabla f-\sum \lambda_{m} \nabla c_{m} \\
c_{m}-s_{m} \\
\lambda_{m} c_{m} \\
s_{m}
\end{array}\right) \\
\text { Newton } \rightarrow \text { SQP }
\end{aligned}
$$

If everything is linear: \rightarrow SIMPLEX (i.e. many business problems)

$$
g(\underline{x})=0 \rightarrow \underline{x}_{N}=G\left(x_{1}, \ldots, x_{N-1}\right)
$$

Unconstrained \rightarrow trust region Newton-type BFGS
gigantic \rightarrow conjugate gradient
In Chemical Engineering, the problems often involve models with differential equations:

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Need gradient and f.

To use all of our methods, we need to be able to compute: $\frac{\partial f}{\partial x_{j}}=\sum_{i} w_{i}\left(\frac{\partial Y_{\sigma, i}}{\partial x_{j}}-\frac{\partial Y_{i}\left(t_{f}\right)}{\partial x_{j}}\right)$ how do you compute this?

$\frac{\partial}{\partial t}\left(\frac{\partial Y_{i}}{\partial x_{j}}\right)$
$\frac{d}{d t} s_{i j}=\left(\sum_{n} \frac{\partial G_{i}}{\partial Y_{n}} S_{n j}\right)+\frac{\partial G_{i}}{\partial x_{j}} \quad \rightarrow \quad \underline{f}$ (for every \underline{x} we get an $\underline{\nabla} f$ that can be used for optimization)
solve this with initial conditions
$\underline{\mathrm{J}} \longleftarrow\{$ Jacobian of \underline{G} \}
Have n^{2} differential equations; stiff; linear in s.

Sensitivity Analysis

Programs to do this: DASPK
SOLVE for s and f simultaneously
DAEPACK
DSL485
DASAC
$\frac{d}{d t} S_{i j}=\left(\sum_{n} \frac{\partial G_{i}}{\partial Y_{n}} S_{n j}\right)+\frac{\partial G_{i}}{\partial x_{j}}$
Initial Conditions
What is $\mathrm{s}_{\mathrm{ji}}\left(\mathrm{t}_{0}\right)$?
$\mathrm{s}_{\mathrm{ji}}\left(\mathrm{t}_{0}\right)=0 \quad$ \{most knobs $\}$
$\mathrm{s}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=1 \quad\left\{\right.$ for adjustment of $\left.\underline{Y}_{0}\right\}$
Professor Barton teaches an advanced course in optimization.
10.34, Numerical Methods Applied to Chemical Engineering

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Boundary Value Problems (BVPs)

Conservation Laws: ${ }^{\partial \phi} / \partial \mathrm{t}=-\underbrace{-\underbrace{\nabla} \cdot(\phi \underline{\mathrm{V}})}_{\text {convection }}-\underbrace{\nabla \cdot \underbrace{}_{\text {reaction }}}_{\text {diffusion }}+\underbrace{\mathrm{S}(\phi)}$
$\underline{\underline{J}}_{D}=\underline{\underline{\Gamma}}+\underline{\nabla} \phi$
isotropic: $\underline{\underline{J}}_{D}=-\mathrm{c} \underline{\nabla} \phi$
for steady-state, isotropic: $0=-\underline{\nabla} \cdot(\phi \underline{v})-\mathrm{c} \underline{\nabla}^{2} \phi+\mathrm{S}(\phi) \quad \forall \underline{\mathrm{x}}$

Boundary conditions:

Dirichlet	$\phi($ boundary $)=$ number
von Neumann	$\nabla \phi($ boundary $)=$ number or 0
Symmetry	$\frac{\partial \phi}{\partial x_{j}}=0$

$\phi(\underline{x})$ infinite $\quad\{$ rare to find exact $\}$
$\phi_{\text {approx }}(\underline{x})=f(\underline{x} ; \underline{\mathrm{c}}) \quad$ adjust: large finite number $\left(10^{4}\right)$

Basis function expansions $\phi_{\text {approx }}=\sum_{n=1}^{N_{\text {basis }}} c_{n} \Psi_{n}(\underline{x})$
 some interpolation

Finite difference approximation to differential equation
Dirichlet ϕ (boundary)
$\{\phi\} \quad i=1, \bar{N}$
$\left.\frac{\partial \phi}{\partial x}\right|_{x_{1}}=\frac{\phi_{2}-\phi_{0}}{x_{2}-x_{0}} \longleftarrow \phi_{\text {B.C. }}$

von Neumann

10.34, Numerical Methods Applied to Chemical Engineering

Lecture 18 Prof. William Green

Page 3 of 4
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
$\left.\frac{\partial \phi}{\partial x}\right|_{\chi_{0}}$ given $\phi_{0} ? \quad$ Usual $\rightarrow 2^{\text {nd }}$ order polynomials

$$
\phi(\underline{x})=\phi\left(x_{0}\right)+\left.\frac{\partial \phi}{\partial x}\right|_{x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{x_{0}}\left(x-x_{0}\right)^{2}
$$

unknown known unknown
$\phi_{0}=\left.f\left(\phi_{1}, \phi_{2}\right) \quad \frac{\partial \phi}{\partial x}\right|_{x_{1}}=\frac{\phi_{2}-f\left(\phi_{1}, \phi_{2}\right)}{x_{2}-x_{0}}$
$\phi\left(x_{1}\right)=\phi_{0}+\left.\frac{\partial \phi}{\partial x}\right|_{x_{0}}\left(x_{1}-x_{0}\right)+\left.\frac{1}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{x_{0}}\left(x_{1}-x_{0}\right)^{2} \ldots$
$\phi\left(x_{2}\right)=\phi_{0}+\left.\frac{\partial \phi}{\partial x}\right|_{x_{0}}\left(x_{2}-x_{0}\right)+\left.\frac{1}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{x_{0}}\left(x_{2}-x_{0}\right)^{2} \ldots$
$\phi_{0}=\frac{\phi_{1} \frac{\left(x_{2}-x_{0}\right)^{2}}{\left(x_{1}-x_{0}\right)^{2}}-\phi_{2}}{\frac{\left(x_{2}-x_{0}\right)^{2}}{\left(x_{1}-x_{0}\right)^{2}}-1} \quad$ for $\left.\frac{\partial \phi}{\partial x}\right|_{x_{0}}=0$
If Δx uniform, $\phi_{0}=\frac{4 \phi_{1}-\phi_{2}}{3}$
This is how you find out B.C. with second order polynomial schemes and a finite difference approximation.

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

