
10.34, Numerical Methods Applied to Chemical Engineering 
Professor William H. Green 

Lecture #17: Constrained Optimization. 
 

Notation 
 “second derivative of f(x).”: We normally mean 

fxx Hessian Matrix  
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but second derivative can also mean: 
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Constrained Optimization 
Equality Constraints: minx f(x)  such that g(x) = 0 

May be able to invert this statement as: xN = G(x1, x2, …, xN-1) 

Then we can state min as: min f(x1, x2, …, xN-1,G(x1, x2, …, xN-1))   

Notice the xN is gone. Constrained becomes unconstrained. Solve with previous methods. 

Other way to do this: 

Lagrange Multipliers 

Unconstrained 0=
∂
∂

mnxnx
f

  at the minimum 

- constrained problems do not work that way! 

o BOUNDARIES GET IN THE WAY 

Constrained: 
min.min. constxnconstxn x

g
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∂ λ  f|const. min = λ g|x const. min 

Gradient of f equals 0 in directions parallel to constraint but not perpendicular 

Create a new function L(x, λ) = f(x) – λg(x)  (λ is unknown before you do the problem) 

 xL = 0    at constrained min 
∂L/∂λ = g(x)   0 at constrained min 

Second derivatives not necessarily all positive 
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Augmented Lagrangian 

LA = f(x) – λg(x) + 2))((
2

1 xg(0)μ
 

minx LA given initial guess λ[0], μ[0]  xmin
[0]

xLA(xmin
[0], λ[0]) = f|xmin

[0]  - λ[0] g(xmin
[0]) - 

(0)μ
1

g(x) g(x)  f – (λ[0] - (0)μ
)( ]0[

minxg
) g(x) 
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 λ[1] 

As μ[0] shrinks, 
(0)μ2

1
 gets large, magnifying (g(x))2 term, and thus holding the constraint 

more strictly. minx LA using λ[1] get a new xmin. In quantum mechanics, λ corresponds to 

orbital energies. Most of the time, λ does not have a physical meaning. μ[0] is a 

mathematical trick. 

More Than One Constraint 
Suppose you have >1 constraints:  g1(x) = 0  make sure these are compatible 

      g2(x) = 0 i.e. there is a “feasible space” – set  

      g3(x) = 0 of x that satisfies all constraints 

L = f(x) - λ∑
i

igi(x) 

L = 0 f = λ∑
i

i gi

Inequality Constraints  
very common 

min f(x), s.t. g(x) = 0, h(x) ≥ 0 

 Active inequality constraints: h(xmin) = 0 

 Inactive inequality constraints: h(xmin) > 0 

Usually, we do not know whether h’s are active or inactive before doing a problem, but must 

leave in during optimization process, to allow finding of solution: 

 

f = Kj hj, K ≥ 0  when hj is active; also hj = 0 and kj ≥ 0. 

 Kjhj(x const. min) = 0 when hj is inactive 

  



 if inactive, hj ≠ 0 and kj = 0. hj can be anything; it does not affect the problem 

 

Karash-Kahn-Tucker (KKT) conditions: 
 L = f(x) - Σλigi(x) – Σkjhj(x) 

  L(xmin) = 0  h(xmin) ≥ 0

  g(xmin) = 0  Kj ≥ 0   

     Kjhj = 0 

To handle active-inactive constraints, add slack variables: 
hj(x) ≥ 0  hj(x) – Sj = 0,  Sj ≥ 0 

Augmented Method LA:  

 Optimal Sj = max{hj(x) – μ[k]Kj
[k]; 0} 

LA = f(x) – Σλigi
 - Σkjhj

 – Σμ[k](kj
[k])2 + (1/2μ

[0])(gi
2+hj

2+(μ[0]kj)2) 

F(x) = LA = 0   Use Newton’s Method with Broyden to approximate the Hessian matrix. 

Trying to solve: JLA *Δx = - LA  Use Newton’s method to find x 

Jacobian is messy: 
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If we want to: minpf(p) = (1/2)pT
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- can easily get p  (same as Δx above) “quadratic program” 

Sequential Quadratic Programming (SQP) 
   In MATLAB: fmincon 
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