10.34, Numerical Methods Applied to Chemical Engineering
 Professor William H. Green
 Lecture \#17: Constrained Optimization.

Notation

"second derivative of $\underline{f}(\underline{x})$. ." We normally mean
$\mathrm{f}_{\mathrm{xx}} \quad$ Hessian Matrix $\quad \underline{\underline{H}}=\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}\end{array}\right) \quad \nabla^{2} \mathrm{f}$ in BEERS
but second derivative can also mean:
$\mathrm{f}_{\mathrm{xx}} \quad$ Laplacian $\operatorname{Tr}\{\underline{\underline{H}}\}=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}$ - scalar $\quad \nabla^{2} \mathrm{f}$ in Physics Texts $\nabla \cdot(\underline{\nabla})$

Constrained Optimization

Equality Constraints: $\min _{\underline{x}} \underline{f}(\underline{x})$ such that $g(\underline{x})=0$
May be able to invert this statement as: $x_{N}=\underline{G}\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)$
Then we can state min as: $\min \underline{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}-1}, \underline{\mathcal{G}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}-1}\right)\right.$)
Notice the x_{N} is gone. Constrained becomes unconstrained. Solve with previous methods.
Other way to do this:
Lagrange Multipliers
Unconstrained $\left.\frac{\partial f}{\partial x_{n}}\right|_{\underline{x}_{n n}}=0$ at the minimum

- constrained problems do not work that way!
o BOUNDARIES GET IN THE WAY
Constrained: $\left.\frac{\partial f}{\partial x_{n}}\right|_{\underline{x} \text { const.min }}=\left.\left.\lambda \frac{\partial g}{\partial x_{n}}\right|_{\underline{x} \text { const.min }} \underline{\nabla f}\right|_{\text {const. } \min }=\left.\lambda \underline{\nabla} g\right|_{\underline{\underline{~ c o n s t}} \text {. min }}$
Gradient of f equals 0 in directions parallel to constraint but not perpendicular Create a new function $L(\underline{x}, \lambda)=f(\underline{x})-\lambda g(\underline{x})$ (λ is unknown before you do the problem)

$$
\begin{array}{c|l}
\nabla_{x} \mathrm{~L}=0 & \text { at constrained min } \\
\partial \mathrm{L} / \partial \lambda=\mathrm{g}(\underline{\mathrm{x}}) \rightarrow 0 & \text { at constrained min }
\end{array}
$$

Second derivatives not necessarily all positive

Augmented Lagrangian

$\mathrm{L}_{\mathrm{A}}=\underline{\mathrm{f}}(\underline{\mathrm{x}})-\lambda \mathrm{g}(\underline{\mathrm{x}})+\frac{1}{2 \mu^{(0)}}(g(x))^{2}$
$\min _{\underline{x}} L_{\triangle}$ given initial guess $\lambda^{[0]}, \mu^{[0]} \rightarrow \underline{x}_{\text {min }}{ }^{[0]}$
$\nabla_{\mathrm{x}} \mathrm{L}_{\mathrm{A}}\left(\underline{\mathrm{x}}_{\min }{ }^{[0]}, \lambda^{[0]}\right)=\left.\underline{\nabla \mathrm{f}}\right|_{\mathrm{xmin}}{ }^{[0]}-\lambda^{[0]} \underline{\nabla \mathrm{g}}\left(\underline{\mathrm{x}}_{\min }{ }^{[0]}\right)-\frac{1}{\mu^{(0)}} \mathrm{g}(\underline{\mathrm{x}}) \underline{\nabla \mathrm{g}(\underline{\mathrm{x}})} \rightarrow \underline{\nabla \mathrm{f}}-\underbrace{\left(\lambda^{[0]}-\frac{g\left(x_{\min }^{[0]}\right)}{\mu^{(0)}}\right.}) \underline{\nabla \mathrm{g}}(\underline{x})$ $\lambda^{[1]}$
As $\mu^{[0]}$ shrinks, $\frac{1}{2 \mu^{(0)}}$ gets large, magnifying $(g(\underline{x}))^{2}$ term, and thus holding the constraint more strictly. $\min _{\underline{x}} L_{\underline{\underline{A}}}$ using $\lambda^{[1]}$ get a new $\underline{\underline{x}}_{\text {min }}$. In quantum mechanics, λ corresponds to orbital energies. Most of the time, λ does not have a physical meaning. $\mu^{[0]}$ is a mathematical trick.

More Than One Constraint

Suppose you have >1 constraints:

$$
\begin{array}{ll}
g_{1}(\underline{x})=0 & \text { make sure these are compatible } \\
g_{2}(\underline{x})=0 & \text { i.e. there is a "feasible space" - set } \\
g_{3}(\underline{x})=0 & \text { of } \underline{x} \text { that satisfies all constraints }
\end{array}
$$

$\mathrm{L}=\underline{\mathrm{f}}(\underline{\mathrm{x}})-\sum_{i} \lambda_{i} \mathrm{~g}_{\mathrm{i}}(\underline{\mathrm{x}})$
$\nabla \mathrm{L}=0 \quad \underline{\nabla f}=\sum_{i} \lambda_{\mathrm{i}} \nabla \mathrm{g}_{\mathrm{i}}$

Inequality Constraints

very common
$\min \underline{f}(\underline{x})$, s.t. $g(\underline{x})=0, h(\underline{x}) \geq 0$
Active inequality constraints: $\mathrm{h}\left(\underline{x}_{\text {min }}\right)=0$
Inactive inequality constraints: $\mathrm{h}\left(\underline{\mathrm{x}}_{\text {min }}\right)>0$
Usually, we do not know whether h's are active or inactive before doing a problem, but must leave in during optimization process, to allow finding of solution:

10.34, Numerical Methods Applied to Chemical Engineering
if inactive, $h_{j} \neq 0$ and $k_{j}=0 . \nabla h_{j}$ can be anything; it does not affect the problem

Karash-Kahn-Tucker (KKT) conditions:

$$
\begin{array}{cl}
\left.\mathrm{L}=\underline{\mathrm{f}}(\underline{\mathrm{x}})-\Sigma \lambda_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}} \underline{\mathrm{x}}\right)-\sum \mathrm{k}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}(\underline{\mathrm{x}}) & \\
\underline{\nabla} \mathrm{L}\left(\underline{\mathrm{x}}_{\min }\right)=\underline{\mathrm{h}} & \underline{\mathrm{x}}\left(\underline{\left.\mathrm{x}_{\min }\right) \geq \underline{0}}\right. \\
\mathrm{g}\left(\underline{\mathrm{x}}_{\text {min }}\right)=\underline{0} & \mathrm{~K}_{\mathrm{j}} \geq 0 \\
& \mathrm{~K}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}=0
\end{array}
$$

To handle active-inactive constraints, add slack variables:
$h_{j}(\underline{x}) \geq 0 \rightarrow h_{j}(\underline{x})-S_{j}=0, S_{j} \geq 0$
Augmented Method L_{A} :

$$
\text { Optimal } S_{j}=\max \left\{h_{j}(\underline{x})-\mu^{[k]} K_{j}^{[k]} ; 0\right\}
$$

$L_{A}=\underline{f}(\underline{x})-\Sigma \lambda_{i} g_{i}-\Sigma k_{j} h_{j}-\Sigma \mu^{[k]}\left(k_{j}{ }^{[k]}\right)^{2}+\left({ }^{1} / 2 \mu^{[0]}\right)\left(g_{i}{ }^{2}+h_{j}{ }^{2}+\left(\mu^{[0]} k_{j}\right)^{2}\right)$
$\underline{F}(\underline{x})=\underline{\nabla} L_{A}=0$ Use Newton's Method with Broyden to approximate the Hessian matrix.
Trying to solve: $\underline{J}_{L_{A}} * \underline{\Delta x}=-\underline{\nabla} L_{A}$ Use Newton's method to find x
Jacobian is messy:
$\left.\left(\begin{array}{cc}\left.\left(\frac{\partial^{2} L}{\partial x_{i} \partial x_{j}}\right)\right|_{\text {old }} & \left.\left(-\frac{\partial C_{m}}{\partial x_{j}}\right)^{T}\right|_{\text {old }} \\ \left.\left(\frac{\partial C_{n}}{\partial x_{j}}\right)\right|_{\text {old }} & \underline{\underline{\mathbf{0}}}\end{array}\right) \underline{\underline{\Delta \lambda}}\right)=\binom{-\left.\nabla_{x} f\right|_{x^{\text {old }}}}{\left.\underline{S}-\underline{C\left(x^{\text {old }}\right)}\right)}$
If we want to: $\left.\min _{\underline{p}} \mathrm{f}(\underline{\mathrm{p}})=\left.(1 / 2) \underline{\mathrm{p}}^{\top}\left(\frac{\partial^{2} L}{\partial x_{i} \partial x_{j}}\right)\right|_{x^{\text {ldd }}} \mathrm{p}+\underline{\nabla \mathrm{f}} \right\rvert\, \underline{\underline{x}}^{\text {old. }} \cdot \underline{p}$
such that $\left.\sum \frac{\partial c_{m}}{\partial x_{j}}\right|_{x^{\text {old }}} p_{j}+c_{m}\left(x^{\text {old }}\right)=0 \quad \forall_{m}=1, \ldots, N_{\text {constraints }}$

- can easily get \underline{p} (same as $\underline{\Delta x}$ above) "quadratic program"

Sequential Quadratic Programming (SQP)

In MATLAB: fmincon

