Lecture \#14: Implicit Ordinary Differential Equation (ODE) Solvers. Shooting.

Implicit ODE Solvers

${ }^{d y} / d t=-y \quad y(t=0)=1 \quad y_{\text {true }}=e^{-t}$
with explicit Euler $\underline{G}=\underline{F}(\underline{Y}(\mathrm{t}))$
for this case, instability if $\Delta t>1$
with implicit Euler $\quad \underline{G}=\underline{F}(\underline{Y} \quad(t+\Delta t)) \quad$ For $\Delta t=2$,
$Y_{t+\Delta t}^{\text {new }}=Y_{t}^{\text {old }}+\Delta t^{*} F\left(Y^{\text {new }}\right)$

$$
\begin{aligned}
& \mathrm{y}_{\text {new }}=1+2\left(-\mathrm{y}_{\text {new }}\right) \\
& 3 \mathrm{y}_{\text {new }}=1 \rightarrow \mathrm{y}_{\text {new }}=1 / 3 \\
& \mathrm{e}^{-2}=\mathrm{y}_{\text {true }} \\
& \mathrm{y}_{\text {new }}=1 / 3+2\left(-\mathrm{y}_{\text {new }}\right) \\
& 3 \mathrm{y}_{\text {new }}=1 / 3 \rightarrow \mathrm{y}_{\text {new }}=1 / 9 \\
& \mathrm{e}^{-4}=\mathrm{y}_{\text {true }}
\end{aligned}
$$

Figure 1. Comparison of implicit Euler to true value.
Accuracy low, but Implicit Euler does not become numerically unstable. Explicit Euler decays too fast. Implicit Euler decays too slow, but it allows one to use larger timesteps.

Stiff Solvers

Stiff: $\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0} \gg \Delta \mathrm{t}_{\text {max }}$

Explicit $|\lambda|_{\text {max }} \Delta \mathrm{t} \leq 1$ for stability
Stiff solvers:
ode15s \leftarrow usually better
ode23s \leftarrow super stiff
Non-stiff
ode45 \leftarrow explicit method
Example:
$\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
In the presence of $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{OH}+\mathrm{CO} \rightarrow \mathrm{H}+\mathrm{CO}_{2} \\
& \mathrm{H}+\mathrm{O}_{2} \rightarrow \mathrm{OH}+\mathrm{O} \\
& 1 / \lambda_{\mathrm{OH}} \sim 10^{-9} \mathrm{~s} \quad 1 / \lambda_{\mathrm{CO}} \sim 1 \mathrm{~s} \\
& \Delta \mathrm{t}_{\text {explicit }} \leq 10^{-9} \mathrm{~s}
\end{aligned}
$$

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

9 orders of magnitude difference in time scales
In diffusion problems $\lambda_{\text {fast }} / \lambda_{\text {slow }} \sim N_{\text {mesh }}{ }^{2} \sim 1 /(\Delta x)^{2}$ so a fine mesh makes the problem very stiff.

Shooting

Figure 2.

$y=$ height of cannonball
$\underline{Y}(\mathrm{t}=0)=\binom{Y_{0}^{\text {known }}}{Y_{0}^{\text {guess }}} \quad \underline{Y}_{i}\left(\mathrm{t}_{\mathrm{f}}\right)=\underline{Y}_{\text {special }}$
$\underline{Y}\left(\mathrm{t}_{\mathrm{f}}\right) \leftarrow \operatorname{ode15s}\left(\ldots, \underline{Y}_{o s}, \ldots\right)$

Root-finding (Newton, Broyden)
$g\left(\underline{Y}^{\text {guess }}\right)=0 \quad \mathrm{~g}=\underline{Y}_{i}\left(\mathrm{t}_{\mathrm{f}}\right)-\underline{Y}^{\text {special }}$
$Y_{i}\left(\mathrm{t}_{\mathrm{f}}\right) \leftarrow$ ode15s(..., $\left.\underline{Y}^{\text {guess }}, \ldots\right)$
$\underline{Y}_{\text {best }}{ }^{\text {guess }}=\operatorname{bisect}\left(@ \mathrm{~g},\left[\underline{Y}_{\text {low }}{ }^{\text {guess }}, \underline{Y}_{\text {high }}{ }^{\text {guess }}\right]\right.$, tol $)$
$\left|g\left(\underline{Y}_{\text {best }}{ }^{\text {guess }}\right)\right|<\mathrm{ftol}$
$\left|\underline{Y}_{\text {best }}{ }^{\text {guess }}-\underline{Y}_{\text {true }}{ }^{\text {guess }}\right|<x$ tol
function error $=\mathrm{g}\left(\mathrm{Y}^{\text {guess }}\right)$
$\underline{Y}_{0}=\left[\ldots, \underline{Y}^{\text {guess }}\right]$
$\mathrm{Y}_{\mathrm{f}}=$ ode15s(@F,Yo,tf,tol,options)
error $=Y_{f}\left(n_{\text {special }}\right)-\underline{Y}_{\text {special }}$
inside ode's events \rightarrow stop integrating when something happens

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

