10.34, Numerical Methods Applied to Chemical Engineering Professor William H. Green Lecture #13: Stiffness. MATLAB® Ordinary Differential Equation (ODE) Solvers.

From Last Lecture: Numerical Integration

 $\frac{dY}{dt} = \underline{F}(\underline{Y}) \qquad \underline{Y}(t_{0}) = \underline{Y}_{0} \qquad \underline{G}: \text{ estimated time average slope from } t \rightarrow t + \Delta t$ General Algorithm: $\underline{Y}(t + \Delta t) = \underline{Y}(t) + \Delta t^{*}\underline{G}(\underline{Y}) \qquad \underline{G} = (\text{time avg. slope}) + \delta$ error
Rectangle Rule: Explicit Euler $\underline{G} = \underline{F}(\underline{Y}(t))$ EXPLICIT
Trapezoid Rule: $\underline{G} = \frac{1}{2}(\underline{F}(\underline{Y}(t)) + \underline{F}(\underline{Y}(t + \Delta t)))$ IMPLICIT $\int_{unknown}^{\delta} \nabla O((\Delta t)^{m})$ want $\Delta t \downarrow$ Requirement for accuracy sets ceiling on Δt

Figure 1. Linear approximation to a function.

MATLAB

ode45

Runge-Kutta: G formula where error scales $(\Delta t)^5$

If Δt is small, error is small, but takes many steps

(tradeoff)

* new t \leftarrow t+ Δ t

Adding big numbers and small numbers \rightarrow lose log₁₀(N_{timesteps}) sig figs

as Δt decreases. This can be a significant problem.

If computer has 14 sig figs

If you want 6 sig figs in $\underline{Y}(t_f)$: $N_{timesteps} < 10^8$

 $(t_f - t_0)/<\Delta t > < 10^8$ {FLOOR}

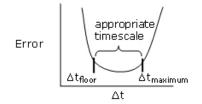


Figure 2. If Δt_{floor} is larger than $\Delta t_{maximum}$, then a solution cannot be found.

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Adaptive Timestepping

Use small Δt when necessary (to keep δ small) Use big Δt everywhere else to save CPU time and minimize roundoff error. $\delta \sim O((\Delta t)^m)$

Richardson Extrapolation

 $Solve ODE using \Delta t = 0.1s \qquad \underline{Y}(t_f; \Delta t = 0.1) \\ Solve same ODE using \Delta t = 0.05s \qquad \underline{Y}(t_f; \Delta t = 0.05) \\ \underline{Y}(t_f; \Delta t) = \underline{Y}_{time}(t_f) + c(\Delta t)^m + ... \\ (unknown higher order of error) \\ \underline{Y}(t_f; \Delta^{t}/_2) = \underline{Y}_{time}(t_f) + c(\Delta^{t}/_2)^m + ... \\ if m = 2 \ \underline{Y}_{true} = \frac{4}{3} \underline{Y}(t_f; 0.05) - \frac{1}{3} \underline{Y}(t_f; 0.1) \\ c \text{ is approximately the same is both equations:}$

For example:
$$\frac{1}{6} \frac{\partial^3 f}{\partial t^3} \Big|_{Y_0} (\Delta t)^3$$

Romberg Extrapolation is Richardson Extrapolation Applied to Integrals

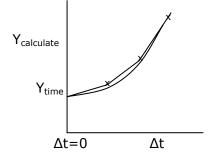


Figure 3. Diagram of Romberg Extrapolation on an increasing function.

10.34, Numerical Methods Applied to Chemical Engineering Prof. William Green

Lecture 13 Page 2 of 4

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Numerical Instability

Example uses Explicit Euler

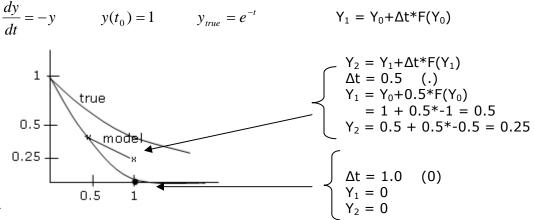


Figure 4. Graphs of function's true and model values

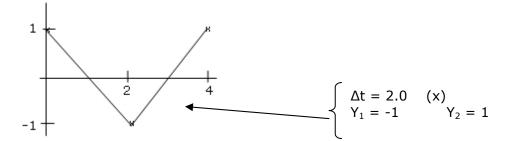


Figure 5. Difference between true and model values.

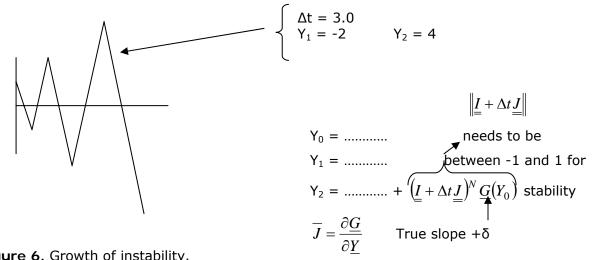


Figure 6. Growth of instability.

Stability

 $-1 \leq \lambda_i \text{ of } \left(\underline{I} + \Delta t \underline{J}\right) \leq +1$

10.34, Numerical Methods Applied to Chemical Engineering Prof. William Green

Lecture 13 Page 3 of 4

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Numerical Stability (For Explicit Methods):

 $||\underline{I} + \Delta t \underline{J}|| \le 1$

* In Beers' textbook... implicit/explicit averaging

If too stiff, you cannot use explicit methods and must turn to implicit methods such as *Trapezoid*. To keep stable, keep Δt small. But cannot go too small in Δt : major stays the same if $\Delta t < eps$.