Lecture \#10: Function Space.

Functional Approximation

(Variables are scalar in this example)
$f(x) \approx \sum_{n=0}^{N} c_{n} \phi_{n}(x)+\Delta(x) \quad$ Figuring out $\Delta(x)$ is similar to solving whole problem
Increase N until function converges
$\left\{\varphi_{\mathrm{n}}(\mathrm{x})\right\}$ favorite set of functions
$\left\{\underline{\mathrm{V}}_{n}\right\}$ favorite set of vectors

$\underline{\mathbf{v}}_{\mathrm{n}} \in\left\{\mathfrak{R}^{m}\right\}$
$\begin{array}{lrl}\text { Basis: } \underline{\mathrm{e}}_{\mathrm{l}}=\sum_{n=0}^{N} d_{l, n} \underline{v}_{n} & \underline{\mathrm{w}}^{\text {approx }} \approx \sum_{n=0}^{N} c_{n} \underline{v}_{n}=\sum_{l} a_{l} e_{l}=\sum_{l, n} a_{l} d_{l, n} \underline{v}_{n} \\ \underline{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{j}}=\delta_{\mathrm{j} \mid} \rightarrow \text { orthonormal } & \underline{\mathrm{c}}=\underline{\mathrm{a}}^{\top} \underline{\underline{\mathrm{D}}}\end{array}$

We want to do the same with functions. How do you take dot product?

1) We chose a basis $\left\{\varphi_{n}(x)\right\}$ and an inner product
orthonormal: $\left\langle\varphi_{m} \mid \varphi_{n}\right\rangle=\delta_{m n}$
2) We're trying to solve $\hat{O} f(x)=q(x) \quad$ ("In most problems, these are all vectors,

but that looks too scary to start with")

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Look for solutions: $\mathrm{f}^{\text {unknown }}(\mathrm{x}) \approx \sum c_{n} \phi_{n}(x)$

$$
\begin{aligned}
& \int_{\substack{a \\
\text { farorite } \\
\text { range }}}^{b} d x g(x) \phi_{m}^{*}(\lambda)[\widehat{O} f(x)]=\int_{a}^{b} d x g(x) \phi_{m}^{*}(x) q(x) \quad \text { solution will depend on } \mathrm{a}, \mathrm{~b}, \underline{c}_{n}, \mathrm{~m} . \\
& \mathrm{F}\left(\mathrm{a}, \mathrm{~b}, \underline{\mathrm{c}}_{\mathrm{n}}, \mathrm{~m}\right)=\mathrm{v}(\mathrm{~m}, \mathrm{a}, \mathrm{~b}) \\
& \quad \mathrm{F}\left(\underline{\mathrm{c}}_{n}, \mathrm{~m}\right)=\mathrm{v}(\mathrm{~m}) \quad \text { Now solve for } \mathrm{c}_{\mathrm{n}} .
\end{aligned}
$$

If \hat{O} is a linear operator:

$$
\hat{O ̂}^{\text {approx }}(x)=\hat{O} \sum c_{n} \phi_{n}(x)=\sum c_{n}\left(\hat{O} \phi_{n}\right)
$$

and if $\hat{O} \varphi_{n}=\lambda_{n} \varphi_{n}$ (i.e. φ_{n} is an eigenfunction of \hat{O})

$$
\begin{aligned}
& \hat{O ̂}^{\text {approx }}(\mathrm{x})==\sum c_{n} \lambda_{n} \phi_{n}(x) \\
& \int_{a}^{b} d x g(x) \phi_{m}^{*} \sum c_{n} \lambda_{n} \phi_{n}=\sum c_{n} \lambda_{n} \underbrace{\int_{a}^{b} d x g \phi_{m}^{*} \phi_{n}} \quad \longrightarrow\left\langle\varphi_{m} \mid \varphi_{\mathrm{n}}\right\rangle=\delta_{\mathrm{mn}} \\
& \int_{a}^{b} d x g(x) \phi_{m}^{*} \hat{O} f^{\text {approx }}=\sum_{n=0}^{N} c_{n} \lambda_{n} \delta_{m n}=c_{m} \lambda_{m} \\
& c_{m} \lambda_{m}=\int d x g(x) \phi_{m}^{*}(x) q(x) \equiv b_{m} \\
& c_{m}=\frac{1}{\lambda_{m}} \int d x g(x) \phi_{m}^{*}(x) q(x) \\
& \hat{O}=\left[k \frac{\partial^{2}}{\partial x^{2}}+h(x)\right] \underset{T(x)}{f(x)} \text { Often this is the operator }
\end{aligned}
$$

Gives you a really messy equation:
Suppose $0=\hat{O}_{1}+h(x) \quad\{i . e$. Schrodinger Equation\}
Suppose $\hat{O}_{1} \varphi_{\mathrm{n}}=\lambda_{\mathrm{n}} \varphi$

$$
\int_{a}^{b} d x g(x) \phi_{m}^{*}(x) \hat{O} f^{\text {approx }}=c_{m} \lambda_{m}+\underbrace{\sum \underbrace{\int d x} \phi_{m}^{*}(x) h(x) \sum c_{n} \phi_{n}(x)}_{\sum c_{n} \int \underbrace{\int d x g(x) \phi_{m}^{*}(x) h(x) \phi_{n}(x)}_{\mathrm{H}_{\mathrm{mn}}}}
$$

$c_{m} \lambda_{m}+\sum c_{n} H_{m n}=b_{m}$

$$
(\underline{H}+\underline{\underline{H}}) \underline{\underline{c}}=\underline{\underline{B}} \quad m=1, \ldots N \quad \text { Linear Problem: } \underline{c}=(\underline{\underline{H}}+\underline{\underline{\Lambda}}) \backslash \underline{b}
$$

$\underline{\lambda}_{m} \underline{\underline{I}}=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right)$
Must evaluate integrals H_{mn} : difficult to evaluate, quantum mechanics requires 6dimensional integrals. H becomes a large matrix when n gets large.

Also have Boundary Conditions: $f(\underline{x}=0)=f_{0}$
Adds another equation: $\quad \sum c_{n} \phi_{n}(x=0)=f_{0}$

$$
\underline{v} \cdot \underline{C}=f_{0}
$$

How to solve? Can try to fit by least squares and just fit all the equations approximately. Can drop larger n terms to leave space for boundary conditions. Another way would be to not consider the boundary conditions and then craftily choose Φ_{n} so that they solve the boundary conditions.

To check if answer makes sense: write out the series and see if ${\underline{c_{n}}}$ converges

Evaluate Residuals

$$
\begin{aligned}
& \underline{\underline{R}=\text { Oof }-q} \\
& \max (\underline{\mathrm{R}})<\text { til? } \\
& \left\|\underline{\underline{R}\left(x_{i}\right)}\right\| \text { <col? }
\end{aligned}
$$

we will evaluate this later

