Lecture \#8: Constructing And Using The Eigenvector Basis.

Homework

1) For those who haven't programmed before - expect it to take time
2) If you get stuck and are beyond the point of learning, stop and move on. The homework is a learning activity.

Matrix Definitions

symmetric: come from second derivatives of scalars
i.e. Hessians $\underline{\underline{H}}_{i j}=\frac{\partial^{2} V}{\partial x_{i} \partial x_{j}}$ are always symmetrical
all real symmetric matrices are 'normal'

```
transpose (\underline{\mp@subsup{A}{}{\top}}\mp@subsup{)}{}{*}=\mp@subsup{\underline{\underline{A}}}{}{H}\mathrm{ (Hermitian conjugate)}
of a complex-
conjugate
if }\underline{\underline{A}}=\mp@subsup{\underline{A}}{}{\top}\mathrm{ ``symmetric'
if }\underline{A}=\mp@subsup{\underline{A}}{}{H}\mathrm{ 'Hermitian'
if }\underline{\underline{A}}\cdot\mp@subsup{\underline{A}}{}{H}=\mp@subsup{\underline{A}}{}{H}\cdot\underline{\underline{A}}\mathrm{ 'normal'
if }\mp@subsup{\underline{A}}{}{\top}=\mp@subsup{\underline{\underline{A}}}{}{-1}\quad`\mathrm{ 'orthogonal'
if }\mp@subsup{\underline{A}}{}{H}=\mp@subsup{\underline{A}}{}{-1}\mathrm{ 'unitary'
```

Square matrices (NxN)
$\underline{\underline{A}}=\underline{U R U}^{H} \quad \underline{\underline{U}}$: unitary
\uparrow Kupper triangular (R)
Schur decomposition: schur(${ }^{(A)}$
A could be dense matrix
$\underline{\underline{U}}$ has hermitian conjugate as inverse

If a real matrix is symmetric, it is also Hermitian.

$\underline{\underline{A}} \cdot \underline{\underline{W}}=\underline{\underline{W}} \cdot \underline{\underline{\Lambda}}(\bar{\omega} \cdot \underline{H} \cdot \underline{W}) \quad$ Back to eigenvalue problem

Hermitian matrices come up in quantum mechanics. All steady states in quantum mechanics are hermitian eigenvalue problems. Unitary matrices also come up in quantum mechanics and are basis transformations.

Hessian matrix: $H_{i j}=\frac{\partial^{2} V}{\partial x_{i} \partial x_{j}}$. Always symmetric, because of the equality of mixed partials.
Because they are symmetric, they are also 'normal'.
Similarity Transform
identity matrix
$\underline{\underline{A}} \cdot \underline{w}_{i}=\lambda_{i} \underline{w}_{i} \quad \underline{\underline{B}}\left(\underline{S}^{-1} \underline{W}_{i}\right)=\underline{S}^{-1} \underline{\underline{A}}\left(\underline{\underline{S}} \cdot \underline{\underline{S}}^{-1}\right) \underline{w}=\underline{\underline{S}}^{-1} \underline{\underline{A}} \cdot \underline{w}=\underline{\underline{S}}^{-1} \lambda_{i} \underline{w}_{i}=\lambda_{i}\left(\underline{S}^{-1} \underline{w}_{i}\right)$
$\underline{\underline{B}}=\underline{\underline{S}}^{-1} \underline{\underline{A}} \underline{\underline{S}} \quad$ ' $\underline{\underline{B}}$ is similar to $\underline{\underline{A}} \quad$ " $\& \underline{\underline{B}}$ have the same eigenvalues
This is used in practice to calculate eigenvalues.
Find a diagonal matrix similar to $\underline{\underline{A}}$ to find eigenvalues of $\underline{\underline{A}}$.
$\underline{\mathrm{S}}_{2}^{-1} \ldots \underline{\mathrm{~S}}_{1}^{-1} \underline{\mathrm{~A}} \underline{\mathrm{~S}}_{1} \ldots \mathrm{~S}_{2} \rightarrow \rightarrow \underline{\wedge}$ continue to add $\underline{\underline{S}}$ and $\underline{\underline{S}}^{-1}$ on each side and eventually you will get at the eingenvalues

How to find S ?
if you're GOOD - find perfect $\underline{\underline{S}}$ such that $\underline{\underline{S}} \cdot \underline{A} \cdot \underline{\underline{S}}=\underline{\Lambda}$ very difficult to find this $\underline{\underline{S}}$ unless someone tells you the eigenvector

In quantum mechanics people use matrices of $10^{9} \times 10^{9}$
"You have to be very crafty to find the $\underline{\underline{S}}$ of such a matrix."

$$
\begin{aligned}
& \underline{\underline{B}}=\underline{Q}^{-1} \underline{\underline{A}} \cdot \underline{\underline{Q}} \quad(\underline{B} \text { is similar to } \underline{\underline{A}}) \\
& =\left(\underline{Q}^{-1} \underline{Q}\right) \underline{\underline{R}} \cdot \underline{Q}=\underline{R} \cdot \underline{Q}=\underline{\underline{B}} \quad \begin{array}{c}
\text { QR Algorithm is found in textbook } \\
\text { and is very complex })
\end{array}
\end{aligned}
$$

$\underline{\underline{A}}\left(c \cdot \underline{w}_{i}\right)=\lambda_{i}\left(c \cdot \underline{w}_{i}\right) \quad$ does not matter how you scale, still get the same eigenvalue eig($\underline{\underline{A}}^{\text {) }}$ gives eigenvalues/vectors (see help eig)
*Uses EISPACK, which is available from netlib
Why is this useful?
singular matrix $\rightarrow \lambda_{i}=0$
$\operatorname{cond}(\underline{\underline{A}})=|\lambda|_{\max } /|\lambda|_{\text {min }} \quad \operatorname{trace}: \operatorname{tr}(\underline{\underline{A}})-\operatorname{sum}$ of $\lambda_{\mathrm{i}}\left(\Sigma\left(\lambda_{\mathrm{i}}\right)=\Sigma \mathrm{a}_{\mathrm{ii}}\right)$

Example Problem Initial Conditions

${ }^{d y} / \mathrm{dt}=\underline{\underline{A}} \cdot \underline{y}$

$$
\mathrm{y}(\mathrm{t}=0)=\mathrm{y}_{0}
$$

if $\underline{\underline{A}}$ is normal
${ }^{d y} / d t={\underline{W} \wedge W^{H}}^{H} y \quad$ multiply both sides by $\underline{W}^{H} \quad \underline{W}^{H d y} / d t=\underline{W}^{H}{\underline{W} \wedge W^{h}} \underline{y}$
$\begin{array}{llll}\mathrm{d} / \mathrm{dt}\left(\underline{\underline{W}}^{H} y\right)=\underline{\Lambda}\left(\underline{W}^{H} \underline{y}\right) & \underline{q}(\mathrm{t}) \equiv \underline{\underline{W}}^{H} y(\mathrm{t}) & \mathrm{dq} / \mathrm{dt}=\underline{\Lambda q} & \mathrm{~d} / \mathrm{dt}\left(\mathrm{q}_{1}\right)=\lambda_{1} \mathrm{q}_{1} \quad \mathrm{q}_{1}=\mathrm{q}_{1,0} \mathrm{e}^{\lambda_{1} t} \\ \mathrm{~d} / \mathrm{dt}\left(\mathrm{q}_{2}\right)=\lambda_{2} \mathrm{q}_{2} & \underline{\mathrm{q}}_{0}=\underline{\underline{W}}^{H} \underline{y} & \text { look at initial conditions }\end{array}$

Schur Decomposition

$\mathrm{y}(\mathrm{t})=\underline{\mathrm{W}} \cdot \underline{q}(\mathrm{t})$

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
$\underline{y}(t)=\underline{\underline{W}}\left(\begin{array}{c}q_{01} e^{\lambda_{1} t} \\ q_{o 2} e^{\lambda_{2} t} \\ \vdots\end{array}\right)$ Using 'eig' function you can get W

Sometimes things are asymmetrical so 'eig' function will give you a matrix. However, you can always do Schur decomposition: $\underline{\underline{A}=\underline{U R U}}{ }^{H}$
If you do Schur you get: ${ }^{d} / \mathrm{dt}\left(\underline{\underline{W}}^{H} \underline{y}\right)=\lambda\left(\underline{\underline{W}}^{H} \underline{y}\right)$
If $\underline{\underline{A}}$ were not normal, use Schur: $\underline{\underline{A}=\underline{U R U}^{H}}$
${ }^{\mathrm{dy}} / \mathrm{dt}=\underline{\underline{U}} \cdot \underline{\underline{R}}_{\underline{R}}^{(\underbrace{\underline{U}^{H} y})} \underbrace{d}_{\underline{q}} / \mathrm{dt}\left(\underline{\underline{U}}_{(\underline{q})}^{\mathrm{q}}\right)=\underline{\underline{R q}} \quad \mathrm{dq} / \mathrm{dt}=\underline{\underline{R q}}$
$\mathrm{q}_{\text {last }}(\mathrm{t})=\mathrm{q}_{\mathrm{o} \text {,last }} \mathrm{e}^{\lambda \mathrm{t}}$
$\frac{d q_{N-1}}{d t}=R_{N-1, N-1} q_{N-1}+R_{N-1, N} q_{N}(t)$
$\frac{d q_{N-1}}{d t}=R_{N-1, N-1} q_{N-1}+R_{N-1, N} q_{N_{0}} e^{\lambda t_{1}}$

$$
R=\left(\begin{array}{cccc}
0 & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & \lambda
\end{array}\right)
$$

can get this if you weren't sleeping in ODE class
(this makes solution more difficult than EIG solution)

Quantum chemistry

Something more complicated

Crafty Solution

$\Psi(\underline{x})=\Sigma c_{i} \varphi i(\underline{x})$

4
find these values that will solve $H \psi=E \psi$

$$
\hat{H} \sum c_{i} \phi_{i}(x)=E \sum c_{i} \phi_{i}(x)
$$

integrate and multiply by $\varphi_{n}{ }^{*}$
$\int \phi_{n}{ }^{*} \hat{H}\left(\sum c_{i} \phi_{i}(x)\right)=\int E\left(\phi_{n}{ }^{*} \sum c_{i} \phi_{i}(x)\right)$

$\sum c_{i} \int \phi_{n}{ }^{*} \hat{H} \phi_{i}=E \sum c_{i} \int \phi_{n}{ }^{*} \phi_{i}$
$\sum H_{n i} c_{i}=E c_{n}$
$\underline{\underline{H}} \underline{c}=E \underline{c} \quad\{$ Eigenvalue Problem $\}$

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Find the eigenvalues E . These are needed for calculations of G (free energy), thermodynamic constants, rate constants, and spectroscopic values.

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

