
10.34, Numerical Methods Applied to Chemical Engineering
Professor William H. Green

Lecture #7: Introduction to Eigenvalues and Eigenvectors.

Newton’s Method (Multi-dimensional)

F(xtrue) = 0

Newton: Taylor expansion around xguess If Δx is small. Works well when xguess is close

F(xguess) + J(xguess)Δx ~ 0.0 xtrue ≈ xguess + Δx

Select xguess; usually difficult to get a good guess

compute F(xguess), J(xguess)
guessxn

m
mn x

F
J

∂
∂

=

factorize J L U

solve L U Δx = -F backsub: L V = -F; U Δx = V

xnew = xguess + Δx

if ||xnew – xguess|| < tolx
CONVERGENCE

if ||F(xnew)|| < atolf rtol doesn’t work for F(x) = 0

xguess xnew

Iterate from compute F(xguess)

If J is singular or poorly conditioned, will not be able to solve.
If Δx is big, method will not work.
In general, radius of convergence is small

- can bound Δx size
- can stop iteration after a certain number, for example, 20 iterations to see

Assumption of Newton’s Method is xguess is VERY GOOD
How close does xguess have to be to guarantee convergence?

• radius of convergence

Backtrack Line Search
If you think xnew is too big, you can backtrack by looking at:
||F(xguess)||- ||F(xnew)||

xguess

FJF ⋅=∇

ΔxNEWTON

Δx = -J-1F

xnew (Newton)

g(λ) = ||F(xguess)+λΔxNEWTON||
by minimizing g(λ) using Bisection (etc.)

Maybe direction F(xguess) to F(xnew) is wrong

Figure 1. Trying to find x between xguess and xnew that gives lower ||F||.

f(x) = ||F(x)||2 = Σ|Fi(x)|2

Minimize scalar function: FJF
x
F

f i
m

i ⋅=
∂
∂

=∇ ∑ 22 works even when J is singular

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

fJf •=∇ is a move downhill

If xguess is good, Δx = -J-1F is the best direction but more risky (good if you can see the end)

f∇ is if “you are lost” Brute force

1) Most risky method (Newton)
2) Safest method
3) Dogleg: compromise

Figure 2. The relationship of Newton’s Method to Dogleg Method.

fsolve implements Dogleg Method using “Trust Region”

If xNewton is within the trust region,
the function will quickly converge

Read ‘doc fsolve’

Figure 3. If F() is close to x~ F(xguess), you can expand the trust region.

*fsolve has this all built in and is therefore much more powerful than simple Newton’s
method.

Optimization
)(min xf

x

f∇ = 0 is a bad way to do this (i.e. fsolve(gradf, xguess))

The matrix is positive definite and

mnnm xx
f

xx
f

∂∂
∂

=
∂∂

∂ 22
.

Strategy: find regions where the problem can be considered optimization

f = ||F||2 problem is there are local minimums

f∇ = J·F can be zero if J is singular and F is in “BAD DIRECTION”

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅
⋅

=
⎟
⎟
⎟

⎠

⎞

⎜

10.34, Numerical Methods Applied to Chemical Engineering Lecture 7
Prof. William Green Page 2 of 3

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

⎜ −−
⎜

⎝

⎛

−−−−−−
−−−−
−−−−−−

0
0
0

 2 row
 1 row

bad

bad

v
v

v

J singular rank(J) < N

J·vbad = 0

if f∇ =0, no way of knowing which direction to go in.

J·vbad = 0*vbad

J·vbad = λvbad λ = 0

Poor conditioning
A·x = b

A·vbad = λvbad A(x+vbad) = A·x + A·vbad
 ≈0 b δb

Certain linear combinations of values you can determine well. Other combinations you
cannot determine.
 A·x=b

10.34, Numerical Methods Applied to Chemical Engineering Lecture 7
Prof. William Green Page 3 of 3

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 A-1 vbad

 x = A-1b

Sensitivity

VT = V-1

() 00 λ
usually: A = V·Λ·VT A·V = V

⎟
⎟
⎟

⎠

⎞

⎜

If you have large dimensional problem, it is difficult to give good xguess

Look at Ftrue(x): can you change to a different problem?
Fapprox(xguess)=0 solvable (ideally, linear)

Ftrue=Fapprox + λFperturb

You want to solve:
Ftrue(x) = 0

Is there an Fapprox(x) = 0 that is soluble through linearization?

 xguess

Ftrue = Fapprox + λFperturb solve new problem with small λ:
 linear Fapprox(xguess = xguess

approx) xguess,1

 or easy or linear
 xguess Fapprox + 0.001Fperturb(xguess,1) xguess,2

 Fapprox + 0.01Fperturb(xguess,2) xguess,3

Ftrue – Fapprox Increment λ until λ = 1

If the program crashes, need to step back and choose λ as a smaller value.

Lecture 8 will discuss when you can
do this factorization

⎜
⎜

⎝

⎛

\00
0\0
00\

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

\00
0\0
00\

	Newton’s Method (Multi-dimensional)
	Backtrack Line Search
	Optimization
	Poor conditioning

