
10.34, Numerical Methods Applied to Chemical Engineering 
Professor William H. Green 

Lecture #6: Modern Methods for Solving Nonlinear Equations. 
 

1D-Problem        unknown: T of reactor 

f(x) = 0 Qrxnexp(-Ea/RT) + h(T – Ta) + c(T4 – Ta
4) = 0 

 heat of reaction       convection   radiation 
        (+)                        (-)                 (-) 
                           Gain heat                 Lose heat         Lose heat 
 
    
    
 
 
 
 
 
 

f(T) 

0 
   T 

 2 steady state temperatures 
 Make a plot with MATLAB 

 
 *netheat.m* 
function qdot = netheat(T) 
% computes the net heating rate of a reactor 
% qdot = 0 at the steady state 
qdot = Q.*exp(-Ea/(R.*T)) + h.*(T-Ta) + c.*(T.^4-Ta.^4); 
 

    
Figure 2. Professor Green modified variables Q and c until the plot looked like 
the one above. Increased Q and decreased c. 

 
 To solve for steady state zeros 

 
 
 
 
 
 

f(T) = 0 
   a        b 

 
 

 

Figure 1. 1D problem 

Q = -2e-5; 
Ea = 5000; 
R = 1.987; 
h = 3; 
Ta = 300; 
c = 1e-8; 

Tvec = linspace(300,3000)
qdot = netheat(Tvec) 
plot(Tvec,qdot) 

Figure 3. Have computer bracket in and find small 
range where plot goes from negative to positive. 
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Bisection 
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start a,b 
such that f(a)<0 and f(b) < 0  
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Figure 4. Function must be continuous. 

 if f(x) · f(a) > 0 
 a = x 
else 
 b = x 

 

This is a problem of TOLERANCE 
 
if((b-a) < tol)  stop 

 
                                                Types of tolerance 
Absolute tolerance       Relative tolerance 
atol: has units 
if |f(x)| < atol·f       rtol: if(b-a) < rtol*|a| 
         
   has to be BIG number       
  
       In MATLAB
 while abs(b-a) > atolx 
  x = (a+b)/2 
 if f(x)·f(a) > 0 
  a = x 
 else 
  b = x 
 end 

 *bisect.m* 
function x = bisect(f,a,b,atolx,rtolx, 

atolf) 
%solves f(x) = 0 
while abs(b-a) > atolx 
 x = 0.5*(b+a); 

if((feval(f,x)*feval(f,a))>0) 
  a=x; 

else 
  b=x; 

end 
end 
 
 Command Window 
 
x = bisect(@netheat,300,2000,0.1,0,0) 
x = 1.2373e+003 
 
CHECK: netheat(1237) = -1.0474  close

    Keep in mind: never get actual solution, but can come close 
 
We can change tolerances to improve results.   

  while(abs(b-a)>atolx)&&(abs(b-a)>(rtolx*abs(a))) 
 x = 0.5*(b+a);   AND: must satisfy both conditions 
 if(abs(feval(f,x))<atolf)  
  return       %if value becomes low enough, return value 
 
x = bisect(@netheat,300,2000,0.1,1e-2,0.5) 
x = 1.2363e+003    looser tolerance gives less accurate answer 
 
Bisection cuts interval by 2 each time 



Every time we cut 3 times, we lose a sig fig 
 
In bisection, time grows linearly with the number of significant figures. 
 
a < xtrue < b 
xtrue = xsoln ± b-a/2 

Newton’s Method (1-D) 
     

 

  
evaluates slope of f(x) 
next guess is the xnew that satisfies f(xnew)=0 
for a line from f(xguess) with the slope at f(xguess) 

Figure 5. Newton’s Method.        
       
 
 For a good guess Newton’s method doubles 

the number of significant figures after every 
iteration; however, we lose robustness if 
guess is poor 

 
f(x) = f(x0)+f’(x0)*(x-x0)+O(Δx2) 

0 = f(xguess)+f’(xguess)*(x-xguess)  
If f’(xguess) ≈ 0  --  doesn’t work 

xnew = xguess – f(xguess)/f’(xguess)  f’(x) = 0
 

 

 Figure 6. NO intersection 

Another drawback is one needs a derivative of the function. 
 

Secant Method  
same as Newton’s, but uses f’(x) approximate 
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Bisection method works only for 1D problems, but Newton/Secant can be used for problems 
with greater dimension 
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Broyden’s Method (Multi-dimensional) 
F(x) = F(x0) + J(x0)·(x-x0)   Method breaks down when J is singular 
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f(x) = 0 
 
approx J = B     outer product is opposite of dot product 
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Newton’s Method (Multi-dimensional) 
O = F(x0)+J(x0)·(x-x0) 

J*Δx = -F(x0)    B[k]Δx = -F
LU    LU 
     LU[k+1] without redoing factorization 

Done in detail in homework problem. 
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