
10.34, Numerical Methods Applied to Chemical Engineering
Professor William H. Green

Lecture #6: Modern Methods for Solving Nonlinear Equations.

1D-Problem unknown: T of reactor

f(x) = 0 Qrxnexp(-Ea/RT) + h(T – Ta) + c(T4 – Ta
4) = 0

 heat of reaction convection radiation
 (+) (-) (-)
 Gain heat Lose heat Lose heat

f(T)

0
 T

 2 steady state temperatures
 Make a plot with MATLAB

 netheat.m
function qdot = netheat(T)
% computes the net heating rate of a reactor
% qdot = 0 at the steady state
qdot = Q.*exp(-Ea/(R.*T)) + h.*(T-Ta) + c.*(T.^4-Ta.^4);

Figure 2. Professor Green modified variables Q and c until the plot looked like
the one above. Increased Q and decreased c.

 To solve for steady state zeros

f(T) = 0
 a b

Figure 1. 1D problem

Q = -2e-5;
Ea = 5000;
R = 1.987;
h = 3;
Ta = 300;
c = 1e-8;

Tvec = linspace(300,3000)
qdot = netheat(Tvec)
plot(Tvec,qdot)

Figure 3. Have computer bracket in and find small
range where plot goes from negative to positive.

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

Bisection

10.34 Numerical Methods Applied to Chemical Engineering Lecture 6
Prof. William Green Page 2 of 4

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

start a,b
such that f(a)<0 and f(b) < 0

2
bax +

=

Figure 4. Function must be continuous.

 if f(x) · f(a) > 0
 a = x
else
 b = x

This is a problem of TOLERANCE

if((b-a) < tol) stop

 Types of tolerance
Absolute tolerance Relative tolerance
atol: has units
if |f(x)| < atol·f rtol: if(b-a) < rtol*|a|

 has to be BIG number

 In MATLAB
 while abs(b-a) > atolx
 x = (a+b)/2
 if f(x)·f(a) > 0
 a = x
 else
 b = x
 end

 bisect.m
function x = bisect(f,a,b,atolx,rtolx,

atolf)
%solves f(x) = 0
while abs(b-a) > atolx
 x = 0.5*(b+a);

if((feval(f,x)*feval(f,a))>0)
 a=x;

else
 b=x;

end
end

 Command Window

x = bisect(@netheat,300,2000,0.1,0,0)
x = 1.2373e+003

CHECK: netheat(1237) = -1.0474 close

 Keep in mind: never get actual solution, but can come close

We can change tolerances to improve results.

 while(abs(b-a)>atolx)&&(abs(b-a)>(rtolx*abs(a)))
 x = 0.5*(b+a); AND: must satisfy both conditions
 if(abs(feval(f,x))<atolf)
 return %if value becomes low enough, return value

x = bisect(@netheat,300,2000,0.1,1e-2,0.5)
x = 1.2363e+003 looser tolerance gives less accurate answer

Bisection cuts interval by 2 each time

Every time we cut 3 times, we lose a sig fig

In bisection, time grows linearly with the number of significant figures.

a < xtrue < b
xtrue = xsoln ± b-a/2

Newton’s Method (1-D)

evaluates slope of f(x)
next guess is the xnew that satisfies f(xnew)=0
for a line from f(xguess) with the slope at f(xguess)

Figure 5. Newton’s Method.

 For a good guess Newton’s method doubles

the number of significant figures after every
iteration; however, we lose robustness if
guess is poor

f(x) = f(x0)+f’(x0)*(x-x0)+O(Δx2)

0 = f(xguess)+f’(xguess)*(x-xguess)
If f’(xguess) ≈ 0 -- doesn’t work

xnew = xguess – f(xguess)/f’(xguess) f’(x) = 0

 Figure 6. NO intersection

Another drawback is one needs a derivative of the function.

Secant Method
same as Newton’s, but uses f’(x) approximate

]1[][

]1[][)()()('
−

−

−
−

= kk

kk
approx

xx
xfxfxf

Bisection method works only for 1D problems, but Newton/Secant can be used for problems
with greater dimension

10.34 Numerical Methods Applied to Chemical Engineering Lecture 6
Prof. William Green Page 3 of 4

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

Broyden’s Method (Multi-dimensional)
F(x) = F(x0) + J(x0)·(x-x0) Method breaks down when J is singular

 ∑ −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

j
joj

xj

i xx
x
f

o

)(,

10.34 Numerical Methods Applied to Chemical Engineering Lecture 6
Prof. William Green Page 4 of 4

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical
Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

f(x) = 0

approx J = B outer product is opposite of dot product

2

T][]1[]1[
][1

||||
)()(

x
xxxBB

Δ
−∗

+=
++

+
kkk

k][k F

Outer Product: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΔΔ
ΔΔΔ

…322212

312111

xFxFxF
xFxFxF

Newton’s Method (Multi-dimensional)
O = F(x0)+J(x0)·(x-x0)

J*Δx = -F(x0) B[k]Δx = -F
LU LU
 LU[k+1] without redoing factorization

Done in detail in homework problem.

	Bisection
	Newton’s Method (1-D)
	
	Broyden’s Method (Multi-dimensional)
	Newton’s Method (Multi-dimensional)

