

Figure 2. Professor Green modified variables Q and c until the plot looked like the one above. Increased Q and decreased c.

To solve for steady state zeros

Figure 3. Have computer bracket in and find small range where plot goes from negative to positive.

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Bisection

start a, b
such that $\mathrm{f}(\mathrm{a})<0$ and $\mathrm{f}(\mathrm{b})<0\}$
$x=\frac{a+b}{2}$
if $f(x) \cdot f(a)>0$
$a=x$
else
$b=x$
This is a problem of TOLERANCE
if((b-a) < tol) stop

Absolute tolerance atol: has units
if $|f(x)|$ < $\underbrace{\text { atol.f }}$
has to be BIG number
while abs(b-a) > atolx
$x=(a+b) / 2$
if $f(x) \cdot f(a)>0$
$a=x$
else
$\mathrm{b}=\mathrm{x}$
end

Figure 4. Function must be continuous.

Types of tolerance
rtol: if(b-a) < rtol*|a|

```
In MATLAB
*bisect.m* function \(x=\) bisect (f,a,b,atolx,rtolx, atolf)
\(\%\) solves \(f(x)=0\) while abs(b-a) > atolx
\(x=0.5 *(b+a)\);
if \(((f e v a l(f, x) * f e v a l(f, a))>0)\)
\(a=x\);
else
\(\mathrm{b}=\mathrm{x}\);
end
end
```


Command Window

$\mathrm{x}=\mathrm{bisect}(@ n e t h e a t, 300,2000,0.1,0,0)$
$x=1.2373 e+003$

CHECK: netheat(1237) $=-1.0474 \leftarrow$ close
Keep in mind: never get actual solution, but can come close
We can change tolerances to improve results.

```
-> while(abs(b-a) >atolx)&&(abs(b-a) > (rtolx*abs (a)))
    x = 0.5* (b+a); AND: must satisfy both conditions
    if(abs(feval(f,x))<atolf)
            return %if value becomes low enough, return value
```

$\mathrm{x}=\mathrm{bisect}(@ n e t h e a t, 300,2000,0.1,1 e-2,0.5)$
$x=1.2363 e+003 \quad$ looser tolerance gives less accurate answer

Bisection cuts interval by 2 each time

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Every time we cut 3 times, we lose a sig fig
In bisection, time grows linearly with the number of significant figures.

```
a}<\mp@subsup{\textrm{x}}{}{\mathrm{ true }}<\textrm{b
x
```


Newton's Method (1-D)

evaluates slope of $f(x)$
next guess is the $x_{\text {new }}$ that satisfies $f\left(x_{\text {new }}\right)=0$
for a line from $f\left(x_{\text {guess }}\right)$ with the slope at $f\left(X_{\text {guess }}\right)$

Figure 5. Newton's Method.
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right)+O\left(\Delta x^{2}\right)$
$0=f\left(x^{\text {guess }}\right)+f^{\prime}\left(x^{\text {guess }}\right) *\left(x-x^{\text {guess }}\right)$
$x^{\text {new }}=x^{\text {guess }}-f\left(x^{\text {guess }}\right) / f^{\prime}\left(x^{\text {guess }}\right)$
For a good guess Newton's method doubles the number of significant figures after every iteration; however, we lose robustness if guess is poor

If $f^{\prime}\left(x^{\text {guess }}\right) \approx 0$-- doesn't work

Figure 6. NO intersection
Another drawback is one needs a derivative of the function.

Secant Method

same as Newton's, but uses $\mathrm{f}^{\prime}(\mathrm{x})$ approximate

$$
f^{\text {approx }}(x)=\frac{f\left(x^{[k]}\right)-f\left(x^{[k-1]}\right)}{x^{[k]}-x^{[k-1]}}
$$

Bisection method works only for 1D problems, but Newton/Secant can be used for problems with greater dimension

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Broyden's Method (Multi-dimensional)

$\underline{\mathrm{E}}(\underline{\mathrm{x}})=\underline{\mathrm{E}}\left(\underline{\mathrm{x}}_{0}\right)+\underbrace{\underline{\mathrm{x}}) \cdot\left(\underline{\mathrm{x}}-\underline{\mathrm{x}}_{0}\right)}_{\left.\sum_{j}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)\right|_{x_{0}}\left(x_{j}-x_{o, j}\right)}$
$f(x)=0$
approx $\underline{\underline{J}}=\underline{\underline{B}}$
outer product is opposite of dot product

$$
\mathbf{B}^{[k+1]}=\mathbf{B}^{[k]}+\frac{\overbrace{F\left(\mathbf{x}^{[k+1]}\right) *\left(\mathbf{x}^{[k+1]}-\mathbf{x}^{[k]}\right)^{\mathrm{T}}}^{\|\Delta \mathbf{x}\|^{2}}}{}
$$

Outer Product: $\left(\begin{array}{llll}F_{1} \Delta x_{1} & F_{1} \Delta x_{2} & F_{1} \Delta x_{3} & \ldots \\ F_{2} \Delta x_{1} & F_{2} \Delta x_{2} & F_{2} \Delta x_{3} & \ldots\end{array}\right)$

Newton's Method (Multi-dimensional)

$\underline{\mathrm{O}}=\underline{\mathrm{F}}\left(\underline{\mathrm{x}}_{0}\right)+\underline{\mathrm{J}}\left(\underline{\mathrm{x}}_{0}\right) \cdot\left(\underline{\mathrm{x}}-\underline{\mathrm{x}}_{0}\right)$
$\underline{\underline{J}}^{*} \Delta \underline{x}=-\underline{F}\left(\underline{x}_{0}\right)$
LU

Done in detail in homework problem.

